
Some tools for computer-assisted theorem
proving in Martin-Löf type theory

Marcin Benke
e-mail: marcin@cs.chalmers.se

Department of Computing Science
Chalmers University of Technology

412 96 Göteborg, Sweden

Abstract. We propose some tools facilitating interactive proof and pro-
gram development in the proof editor Alfa based on Martin-Löf Type
Theory, in particular a tool for equality reasoning supported by tools for
deriving equality (and proofs or its properties) for inductive datatypes
as well as automated proof-search.

1 Introduction

1.1 Context: proof editors and type theory

Alfa [HR00] is a graphical, syntax-directed editor for the proof system Agda
[Coq98], is an implementation of structured type theory (STT) [CC99], which
is based on Martin-Löf’s type theory [ML84].

Like its predecessors in the ALF family of proof editors [Mag94], Alfa allows
one to, interactively and incrementally, define theories (axioms and inference
rules), formulate theorems and construct proofs of the theorems. All steps in
the proof construction are immediately checked by the system and no erroneous
proofs can be constructed.

Alfa is a term-based proof editor. This means that the proof is presented and
recorded as a term, rather than as a tactic expression as in tactic-based proof
editors such as Coq [BBC+97,pro99]. Of course this does not preclude usage of
tactics.

Alternatively, you can view Alfa as a syntax-directed editor for a small purely
functional programming language with a type system that provides dependent
types, thus allowing specification and verification of program properties within
its type system. In fact, the language is very similar to the functional language
Cayenne[Aug98] by Lennart Augustsson (which in turn is based on Haskell).

As such, Alfa supports algebraic datatypes, pattern matching and general
recursive definitions. To preserve logical consistency, all proofs are subject to
termination check as well as typechecking.

Since checking termination is undecidable, the checker approximates, keeping
on the safe side, hence some definitions may be unduly rejected. It is however
more liberal than for example restricting to primitive or well-founded recur-
sion [Wah00].



36 M. Benke

2 Equational reasoning

Equality proofs are important for verification of functional programs. Unfortu-
nately, current type theory style equational proofs are tedious and not easily
readable. We plan to develop methods and tools that would improve this situ-
ation, basing partially on preliminary results on deriving equality for algebraic
types [Ben00] (summarized in Section 4).

An interesting starting point is an unpublished proposal by Lennart Augusts-
son [Aug99] describing a syntactical extension for equality proofs in Cayenne.
We believe that it can be made much more convenient by using interactive mech-
anisms of Alfa and automated proof-search such as described in [Ben01] (which
we briefly describe in Section 3).

Let us start with a simple example: assume we have defined natural numbers,
equality on them, addition, and a couple of simple lemmas about it. We now want
to prove that addition is commutative1

addComm (m::Nat)(n::Nat) :: eq (add m n) (add n m)
= case n of {

(Zero) ->
trans (add m Zero) m (add Zero m) (zeroNeutral m)
(sym (add Zero m) m (zeroNeutral_left m));

(Succ n’) ->
trans (add m (Succ n’)) (Succ (add m n’)) (add (Succ n’) m)
(refl (add m n’))
(trans (Succ (add m n’)) (Succ (add n’ m)) (add (Succ n’) m)

(congr (add m n’) (add n’ m) (addComm m n’))
(trans (Succ (add n’ m)) (add one (add n’ m)) (add (Succ n’) m)

(sym (add one (add n’ m)) (Succ (add n’ m)) (thm1 (add n’ m)))
(trans (add one (add n’ m)) (add (add one n’) m)

(add (Succ n’) m)
(sym (add (add one n’) m) (add one (add n’ m))
(addAssoc one n’ m))
(addSameLeft m (add one n’) (Succ n’) (thm1 n’)))));}

to quote Augustsson, “this is a total mess, and penetrating its meaning is
only recommended for masochists”. What we actually would like to write is
something like this:

1 Of course such theorems about natural numbers can be proven by other means, eg.
Coq’s Omega tactic, but this is not the point; our tool applies equally well to other
types.



Tools for computer-assisted theorem proving 37

addComm (m::Nat)(n::Nat) :: (m + n == n + m)
= case n of {

(Zero) -> EqChain { m + Zero == m == Zero + m }
(Succ n’) -> EqChain {
m + Succ n’ == Succ(m + n’) == Succ(n’ + m) == 1 + (n’ + m)

== (1 + n’) + m == (Succ n’) + m == n + m
}

}

(or even something a bit simpler) while the first, “ugly” form is preserved “behind
the scenes” and fed to the typechecker.

Trivial beautifications like infix operators and their presentation using symbol
font have been present in Alfa for some time. Using Augustsson’s notation brings
us closer to the target, e.g. for the Zero case we get

m + Zero ={ DEF }= m ={ zeroNeutral m }= Zero + m

But there still is a fair amount of noise, especially in more complicated cases.
Moreover, this notation, while quite convenient for batch systems as well as
making presentation substantially cleaner, is not a big improvement with an
advanced interactive system like Alfa.

We propose a tool aimed specifically at interactive construction of proofs
by equational reasoning (chains of equalities). Such construction using our tool
proceeds as follows:

1. User states his goal, eg

?0 ∈ (m + Zero == Zero + m)

and chooses the EqChain tool
2. System displays an initial (uncomplete) chain, eg

m + Zero ==?1 == Zero + m

3. User proposes subsequent elements of the chain. At each step, system checks
whether it can find the proof of equality between neighbouring elements. If
not, the user has now the following options:
– insert some intermediate elements into the chain,
– state some additional lemma enabling automatic proof,
– supply the proof manually.

4. At every step, the system also checks whether the chain is complete (i.e.
whether it can find the proof of the last step and remove the question mark).
The user can also “close” the chain manually by supplying the missing proof.

3 Automated proof search

3.1 Assumptions

– We consider interactive proof developments in a system based on Mono-
morphic Martin-Löf Type Theory.



38 M. Benke

– Proof development proceeds interactively in small steps (definitions/lemmas)2.
– User states a lemma and (optionally) hints as to which previous lemmas he

thinks might be useful in proving the current one.
– System tries to prove the lemma using hints.

The task of constructing an automated tool within this framework faces us
with several challenges:

Given the interactive nature of the system, response time is an important
consideration. The user should expect an answer within reasonable time.

Since Type Theory is an intuitionistic, higher-order logic, applicability of
“classical” theorem proving methods is rather limited, even though possible for
some fragments of the theory [TS98].

Every term may have many equivalent types; some of them give better clues
as to possible proofs than others. Moreover the reduction relation is more com-
plicated than in pure lambda calculus since one has to expand definitions and
case expressions too.

3.2 Strategies

Given the assumptions above, a typical situation would look like

env ` f (x ∈ T ) =? ∈ G

where env contains existing definitions/lemmas (which will be further referred
to as globals), f is the current definition and x represents a lists of parameters
along with their types. Our aim is to find a proof term of type G (goal) to replace
“?” (hole). Moreover the term must be such that the definition would pass the
termination check.

The strategy is guided by a set of directives that ensure termination as well as
— given the interactive nature of the environment — reasonable response time.
For this reason it may fail to produce a proof, especially when no simple proof
exists. The user should then either add one or more auxiliary lemmas (which of
course may possibly be proven automatically) or reconsider her theorem.

4 Deriving equality

Algebraic datatypes are one of central features in functional programming lan-
guages like Haskell and Cayenne as well as in proof-editors based on Martin-Löf
type theory such as Alfa and Agda. Usually, when defining a new datatype, one
stipulates some standard properties. However, spelling them out in full is often
quite tedious. This is even more visible in proof editors than in Haskell, as we not
only need the functions but also their properties properties and proof objects.
Haskell has a mechanism that can automatically derive instances of standard
2 In Martin-Löf Type Theory there is no clear distinction between definitions and

theorems



Tools for computer-assisted theorem proving 39

classes, as in

data List a = Nil | Cons a (List a) deriving Eq

The Derive plugin provides a similar facility for Alfa. Given a datatype, it de-
rives equality definition, along with a proof that it is an equivalence relation. For
first order types, it also generates proofs that the derived equality is substitutive
and decidable.

References

[Aug98] Lennart Augustsson. Cayenne — a language with dependent types. In Proc.
of the International Conference on Functional Programming (ICFP’98).
ACM Press, September 1998.

[Aug99] Lennart Augustsson. Equality proofs in cayenne.
http://www.cs.chalmers.se/~catarina/agda/, 1999.

[BBC+97] B. Barras, S. Boutin, C. Cornes, J. Courant, J.C. Filliatre, E. Giménez,
H. Herbelin, G. Huet, C. Mu noz, C. Murthy, C. Parent, C. Paulin, A. Säıbi,
and B. Werner. The Coq Proof Assistant Reference Manual – Version V6.1.
Technical Report 0203, INRIA, August 1997.

[Ben00] Marcin Benke. Automatic deriving of properties of algebraic datatypes in
Martin-Löf type theory. Presentation at Annual ESPRIT BRA TYPES
Meeting, Durham. Submitted for publication, December 2000.

[Ben01] Marcin Benke. Strategies for interactive proof and program development
in Martin-Löf type theory. To appear in proceedings of 4th International
Workshop on Strategies in Automated Deduction, June 2001.

[CC99] C. Coquand and T. Coquand. Structured type theory. In Workshop on
Logical Frameworks and Meta-languages, Paris, France, Sep 1999.

[Coq98] Catharina Coquand. The AGDA Proof System Homepage.
http://www.cs.chalmers.se/~catarina/agda/, 1998.

[HR00] Thomas Hallgren and Aarne Ranta. An extensible proof text editor. In
Logic for Programming and Automated Reasoning, volume 1955 of LNCS,
pages 70–84. Springer, 2000.

[Mag94] L. Magnusson. The Implementation of ALF - a Proof Editor based on
Martin-Löf ’s Monomorphic Type Theory with Explicit Substitution. PhD
thesis, Department of Computing Science, Chalmers University of Technol-
ogy and University of Göteborg, 1994.

[ML84] P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, Napoli, 1984.
[pro99] The LogiCal project. Coq Homepage. http://coq.inria.fr/, 1999.
[TS98] Tannel Tammet and Jan Smith. Optimized encodings of fragments of type

theory in first-order logic. JLC: Journal of Logic and Computation, 8, 1998.
[Wah00] David Wahlstedt. Detecting termination using size-change in parameter

values. Masters Thesis, Department of Computing Science, Chalmers Uni-
versity of Technology and University of Göteborg, 2000.


