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Abstract. The CClair project is designed to be a general framework
for working with various kinds of transition systems, allowing both ver-
ification and testing activities. It is structured as a set of theories of
Isabelle/HOL, the root being a theory of transition systems and their
behaviour. Subtheories define particular families of systems, like con-
strained and timed automata. Besides the great expressivity of higher
order logic, we show how important features like rewriting and existen-
tial variables are determinant in this kind of framework.

1 Introduction

Labeled transition systems [4, 15] form a widely used formalism for studying
properties of reactive softwares : for instance, we can prove invariants, more or
less strong equivalences between two systems, or build executions for simulation
and test purposes. Besides the plain model — a set of labeled transitions linking
some states —, there exists many variations in the litterature : constrained
automata [3, 9], input-output automata [19], various kinds of timed automata
[1, 18], without forgetting Petri nets, Turing Machines, Robin Milner’s CCS [20].

In general, these concepts are used to modelize critical and/or complex sys-
tems, the behaviour of which is important and hard to understand. Computer-
aided tools are thus necessary to do huge computations or reasoning, allowing
to avoid some human but harmful errors.

Depending on which kind of system we want to work on, two main approaches
can be considered :

Automatic tools can work on some well characterized families of transition
systems which have nice decidability properties; they often cross huge finite
automata for checking some invariant, doing simulations, etc. Among these tools,
we can cite MEC [2], Hytech [14], Kronos [12]. When the size of some system is
too big, or the system is parameterized, or its behaviour is described in terms of
complex data structures, automatic tools based on enumeration techniques may
fail, because of physical limitations of computers or undecidability results [8].

Proof assistants offer the possibility of working with a great variety of math-
ematical objects (including infinite ones) and obtaining results with a very good
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level of confidence. Their real usability comes from their semi-automatic fea-
tures : although they are human-driven — the user states all the main reasoning
steps —, some tools like tactics, conversions, decision procedures, spare the user
the bother of making directly lots of inferences. Some of them allow the user to
call “oracles” to delegate some computations to other tools, with a possible loss
of confidence. Among well-known proof assistants, let us cite COQ [24], HOL
[21, 31], Isabelle [25], PVS [30], Lego [28], NuPRL [13].

As Pnueli points out in his FM’99 conference [27], both kinds of tools are
bound to cooperate within the framework of verification of reactive systems : for
instance, we can use a proof assistant to prove that some property P holds for
each reachable state of a system S, and use an automatic tool to computation
of the set of reachable states of S.

The CClair project [10], written in Isabelle/HOL, aims to provide the user
with an environment for working with transition systems of various kinds, al-
lowing verification and testing in a single framework.

All the techniques presented herein are illustrated by examples we could not
include in this communication but are available at the site of the project [11].

2 The theory structure

CClair ’s kernel is a main theory, called MainTS, of plain labeled transition sys-
tems, which allows to name states, action labels, transitions, traces and execu-
tions, and contains some tools for computing and reasoning. More specific classes
of transition systems, like Büchi, constrained or timed automata are defined in
terms of their translation into plain transition systems.

2.1 Labeled transition systems

Plain labeled transition systems are defined in a polymorphic way, as in Müller
and Nipkow’s work on I/O automata [23]. Let α and σ be type variables for
action labels and states. The polymorphic type (α, σ) transition is used for
representing transitions as triples (s, a, s′), and the type (α, σ) ts of labeled tran-
sition systems is equivalent to (α, σ) transition set. Please notice that, since
in HOL, sets are represented as predicates, no finiteness condition is required
transition systems.

Let us denote by “s a−−→
S

s′” the relationship “there is a transition in S

from s to s′ labeled with a”. Some derived concepts are defined, mainly by
induction or coinduction : the sets of finitely reachable, vivacious states, and
executions and traces. Potentially infinite executions and traces are represented
using Paulson’s lazy lists [26] : traces are lists of action labels and executions
are lists of transitions.

Let us denote by “s ξ,w−−−→
S

s′” the (inductively defined) predicate “ξ is an
execution in S from state s to state s′ and w is the corresponding trace”. Some
variants are available, by forgetting the component ξ or w; in the same way,
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the coinductively defined predicate “s ξ,w−−−→
S

” allows us to consider potentially
infinite executions and traces, but no state of arrival is considered.

This main theory also defines classical concepts common to all classes of tran-
sition systems : invariants, simulation of some system by another, synchronized
product and so on.

The concept of abstraction [17, 19, 22] is also defined in this root theory. A
system A is an abstraction of some system C if we can give two mappings f and
g mapping the states (respectively the action labels) of C into those of A, and
verifying the property : s a−−→

C
s′ =⇒ f(s) g(a)−−→

A
f(s′).

2.2 Specific kinds of transition systems

Plain transition systems are a too vague model for working on real instances.
More accurate models can be described in subtheories of MainTS . In general,
such a model is defined by a translation into plain transition systems or into
already defined automata. At the present time, we mainly worked with two
categories of automata, described below. Some experiments were made with
constrained and Büchi automata too.

Enumerated transition systems The theory SmallTS does not introduce
any new definition, but is composed of tactics and conversions which work on
transition systems presented as finite enumerations of transitions. At present,
we assume that action labels and states are defined on finite datatypes.

This representation allows us to program in ML various tactics and conver-
sions based on finite graph algorithmic. For instance, we can get automatically
the set of reachable states, or all cycle-free executions from one state to another.
Please notice that, unlike using external programs, all the results returned by
these tools have the status of 100% proven theorems, since the ML functions are
only used to direct Isabelle proofs.

Parameterized timed automata Parameterized timed automata (“p-automata”
in short) are constrained automata provided with a single, non resettable clock.

A state in a p-automaton is composed of three informations :

– a location, also called control state,
– a date, which is the current value of the clock,
– a valuation, i.e. a value of any type useful for the modelization; this type is

often a cartesian product, which represents tuples of updatable variables.

A p-automaton is composed of the following informations

– a set of locations,
– an initial location,
– an invariant, which associates to every location a predicate relating dates

and valuations,
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– a set of discrete transitions, composed of a start location, a destination loca-
tion, an action label, and a non deterministic way of updating the valuation.
For instance, if some automaton works on two variables x and y, the rela-
tionship x′ > x + y ∧ y′ = y is such an updating, increasing only the value
of x.

The operational semantics of p-automata is defined by a translation into
the model of plain transition systems. To each p-automaton p is associated a
transition system s having the two following properties :

– all states of s satisfy the invariant of p,
– the transitions of s are either the discrete transitions of p, or temporal tran-

sitions in which only the clock is allowed to change; the invariant associated
with the current location must be maintained during this interval of time.

The control graph of a p-automaton is its abstraction obtained by ignoring
all but its action labels and locations.

We must notice some facts about this model :

– it allows us to define infinite, parameterized automata, with any type for
variables ; as a consequence, it is impossible to provide any fully automatic
tool for computing or reasoning on these automata,

– traces, executions, reachable states of a given automaton need not to be
defined again : it is enough to consider the traces, executions, . . . , of the
translation into the parent theory.

This model was designed for the formalization and proof of algorithms used
in telecommunications and is at the heart of the RNRT scientific project Calife.
It is fully described in [5] and used in [6], then in [29], to prove the correctness
of an “Available Bit Rate” (ABR) algorithm which controls the cell rate in an
ATM network. This proof uses a synchronized product of 3 basic p-automata,
which corresponds to a system with 30 locations, 9 updatable real variables and
3 fixed parameters. The reference [29] describes the precise representation of
p-automata within CClair as well as the correctness proof.

3 Verification and Testing

Tools for verification and testing are mainly defined in the root theory MainTS ,
and are therefore available for any model of transition system. Nevertheless, it
is always possible to define some specific tool in the appropriate subtheory.

3.1 Verification techniques

Let us recall that the behaviour of any transition system is described by the
relationships “s ξ,w−−−→

S
s′” and “s ξ,w−−−→

S
”. Then a verification problem has one
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of the two following forms, where P is any predicate relating states, executions
and traces.

s ξ,w−−−→
S

s′ =⇒ P (s, ξ, w, s′) (1)

s ξ,w−−−→
S

=⇒ P (s, ξ, w) (2)

This general form allows us to express many instances of verification prob-
lems : temporal properties on traces or executions, invariants defined on reach-
able states . . . , with no limitation in theory.

Two main kinds of tools were developed for that purpose :

– Elimination rules for executions, including those automatically generated by
Isabelle/HOL and rules allowing to cut executions at any place,

– Libraries of rules for the most frequent properties to be checked, including
rewriting systems on LTL operators.

For more complex verifications, we adapted to our general framework Müller’s
work on abstraction [22] : abstraction rules allow to transform verification goals
on the concrete system C into verification goals on the abstract system A. In
the case where the property to be checked is an LTL formula, these abstraction
rules reduce proof on executions to trivial obligation proofs on transitions.

3.2 Simulation and Testing

Simulation and testing may be considered as complementary activities with re-
spect to verification. Building executions and traces having some given properties
can help to understand better the behaviour of often complex systems, and even
to win or lose confidence in some conjectured properties. Moreover, the exe-
cutions we build can be confronted with the behaviour of the industrial final
product in order to detect implementation errors.

Simulation goals can be schematized by the two following statements ex-
pressed with the help of Isabelle’s existential variables (signaled by question
marks) :

s
ξ?

,w?

−−−−→
S

s′? ∧ P (s, ξ?, w?, s′?) (3)

s
ξ?

,w?

−−−−→
S

∧ P (s, ξ?, w?) (4)

Like with Prolog-like interaction, the theorems we expect to get are instances
of these statements. As for verification, we present below some techniques we
often used in simulation activity.

– Building some finite execution is basically done using introduction rules on
executions. Once some existential variable is — even partially — instan-
tiated, we can try to simplify the proposition P (. . . ). This simplification



Reasoning about Transition Systems 103

sometimes helps to detect failures and leads to backtrack in order to find
another execution.

– In the SmallTS theory (section 2.2), conversions and tactics based on graph
crossing compute and prove automatically statements of the form s ξ−→

S
s′; if

the user provides only s, s′ and S, w and ξ are determined by the tool. More-
over, this tactic is compatible with Isabelle’s backtracking, and a proof of a
statement like (3) takes the form of a communication between the generation
of executions and the simplification of the P (. . . ) part, which may result in
partial failures. For instance, let a and b be actions symbols, s and s′ be states

of some finite system S; then a query like “s ξ?
,w?

−−−−→
S

s′ ∧w? |= ♦(a∧©♦b)”
which looks for some execution from s to s′ such that its trace contains some
occurrence of a before some occurrence of b, is solved in one step, thanks to
Isabelle’s Prolog-like facilities.

– Building infinite executions is obviously more complex. If we do not want
to do it manually, the best is to use operators like •Ω (infinite iteration on
languages) and reduce the problems like (4) to building finite cycles (which
reduces the problems to the form (3)). For example, looking for a trace in
¤♦L may be reduced to the search of a finite cycle in ♦L.

– In difficult cases, tactics based on abstraction can make the task easier; for
instance, one may extract the control graph of some timed automaton; if this
graph is finite, one can use some automatic tools of SmallTS to compute
candidates for executions, which are confronted to invariants and guards
of the original automaton. This tactic helps us to restrict the search space
when looking for some execution. Experiments on the use of abstraction for
testing are still restricted to the use of control graph; we hope to generalize
this technique to more complex cases.

Examples involving tests have been done on enumerated and temporal sys-
tems; please refer to [11] for detailed developments.

4 Actual and future development

CClair has been built as an experimental framework on transition systems,
mixing deduction and computation. On three classes of systems — finite, con-
strained, timed automata —, the examples we worked on seem to show that
various techniques like higher-order resolution, coinduction, term rewriting and
Prolog-like interaction, put together, provide a powerful framework for working
on reactive systems.

One of the examples — the ABR-conformance algorithm — is large enough
to provide a field of experimentation for the design of new tools. Other examples
are available at the project home page.

Nevertheless, the set of rules and theorems we proved is still very incom-
plete; many of these results came as lemmas required by other developments
and examples, and we have to build more systematically our libraries.

Future work may take several directions :
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– In their work on “input/output” automata, Müller and Nipkow [23] used
the domain theory of HOLCF. Our work is largely inpired by theirs, but
we worked directly in “pure HOL”; it would be interesting to check which
improvements some adaptation of CClair to HOLCF could bring.

– At the present time, the use of our framework needs some competence on
theorem-proving. If we want our system to be used by specialists of reactive
systems or engineers, we must provide tools to hide a theorem-proving tech-
nology which may seem to be restricted to specialists. In the same spirit, the
use of the Isar style in our developments should make them more accessible.

– During simulation and testing, many unknown variables are generated, and
it should be useful to instantiate them as soon as possible. Integration of our
tools with some constraint solver should be of a great help.

– The COQ proof assistant, based on the Inductive Calculus of Constructions,
will soon be enriched with new computation (rewriting) facilities. It would
be interesting to adapt our work to this constructive framework, and for
instance consider execution generation by extraction.

– The main part of our definitions use Isabelle’s inductive/coinductive package,
which is itself based on the µ-calculus on powersets. Developing further this
theory may — besides a scientific interest —, help to unify much of our tools.

5 Related work

Many works have been done about the application of theorem proving to the
study of reactive systems. As far as we know, the original aspects of our work
lie in its simulation/testing techniques and its aim to genericity.

As said above, the closest work to ours seems to be Müller and Nipkow’s the-
ory of input/output automata. Theories of traces and executions are developped,
and automatism by rewriting works well.

The Temporal Logic of Action (TLA [16]) is another verification framework
for reasoning about concurrent systems. A formalization of TLA is written by
Stephan Merz and is available with the sources of Isabelle/HOL. Unlike CClair ,
both systems and properties are represented by logical formulas. TLA comes
with a wide collection of deductive rules some of which have been translated
into our formalism.

STeP [7] is a tool that supports both deductive and algorithmic approaches
for the verification of reactive systems. Properties are expressed using linear
temporal logic and are reduced into a set of first-order formulas by applying
some predefined deductive rules. STeP integrates a model-checker for finite states
systems and the automatic computation of invariant properties. Because CClair
is based on HOL, it seems to be more flexible : systems can be defined in a natural
way, possibly by supplying declarations of some higher order constants, and the
specification of properties to be checked is not limited to the LTL formalism.
Moreover, Isabelle offers to CClair a high level of upgradeability : any proven
theorem may be considered as a potential deductive rule.
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6 Conclusion

CClair presents a complete formalization of the theory of labeled transition
systems, which serves as a starting point to define more complex models. These
models inherit the results and tools developed in the core theory.

Moreover, it is possible to use at the same time different formalizations,
compare them, and merge verification and testing activities into a single one :
augment the knowledge of some automaton or family of automata.

The evolution of CClair will take into account the need for interfaces usable
by non-specialists, by hiding the complexity of logic, and building bridges with
already existing tools.
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