
Constructing Isabelle Proofs
in a Proof Refinement Calculus

Christophe Depasse

Université catholique de Louvain,
Dept. of Computing Science and Engineering,

Place Sainte-Barbe 2, B-1348 Louvain-la-Neuve, Belgium
depasse@info.ucl.ac.be

Abstract. We present a framework to develop structured proofs in Is-
abelle. The Isabelle proofs are expressed in an algebraic calculus for proof
composition and refinement. We benefit from the power of Isabelle and
from the algebraic structure of proofs. The Isabelle meta-logic is trans-
lated in the algebraic calculus, translating theorems into abstract proofs.
Deduction rules are expressed as refinement rules; the premises are re-
placed by the structured proof of the conclusion. These refinement rules
may be used as easily as the corresponding Isabelle rules, knowing the
premises to be used. This approach allows us to integrate other theo-
rem provers in the calculus, providing a general framework for various
theorem provers.

1 Introduction

For a number of years, many theorem proving assistants have been designed [1].
They are used for theorem proving and system verification. Some of them are
well established in the community, e.g. Isabelle [2], PVS [3], Coq [4]. Recently,
more attention is being paid to the user interfaces and in particular, to the
presentation of the proofs.

In [5], Merriam and Harrison review critical characteristics of an efficient
interface. So far, we don’t know any system that can meet all the requirements
stated. However powerful, the theorem proving assistants conceal useful infor-
mation from the user, in the sense that the proof itself is hidden, focusing on
proving formulae. The proof is embedded in the process of verification. As a
consequence, major problems arise concerning proof planning and reflection, i.e.
the ability to read, understand and develop the proof.

To tackle these proof presentation problems, we use a proof refinement calcu-
lus [6] to represent and construct proofs. This algebraic calculus uses abstraction
and refinement as essential techniques for proofs. This approach greatly enhances
understanding of the deep structure of proofs. It is well known that proofs are
akin to programs, and that programs are best understood by using algebra and
refinement [7].

The calculus is designed as a generic framework for proofs. To obtain a prac-
tical system for developing structured proofs, we can integrate a theorem proving



138 C. Depasse

assistant in the calculus. Then, we benefit from the theorem prover power, and
from the proof structure and refinement of the calculus.

The main contribution of this paper is to integrate the Isabelle system in the
calculus. Moreover, we show how this integration enhances the construction of
understandable proofs. The construction of proof trees in the Isabelle system has
already been studied [8], but never outside the Isabelle system. Other systems
like PVS and Coq have also been studied. We chose the Isabelle system for
clarity. Indeed, the Isabelle meta-logic and the proof refinement calculus can
be integrated smoothly, and the main deduction rules are simple enough to
have straightforward corresponding refinement rules. As far as we know, proof
abstraction and refinement have not been used before to enhance an existing
system. Previous works on proof presentation rely on the translation of proofs
into various languages, e.g. natural language or mathematical vernacular. But we
believe that in these other approaches, the lack of understandability is replaced
by syntax overflow and/or ambiguity, because the abstraction level of proofs is
not improved.

The paper is organized as follows. First, we informally recall the proof re-
finement calculus, built on the concepts of abstract proofs, refinement order and
composition of proofs. In Section 3, we describe how the Isabelle meta-logic
can be translated into the proof refinement calculus. In Section 4, we show how
refinement rules, corresponding to Isabelle rules, arise naturally in the proof re-
finement calculus. In Section 5, we give a brief example of refinement. Finally,
Section 6 contains our conclusions.

2 The Proof Refinement Calculus

This paper is based on a proof refinement calculus [6, 9]. This calculus considers
proofs as objects at various levels of abstraction. Intuitively, a proof is an argu-
ment of a formula, the level of details required relies on the confidence in the
argument. With this view, a formula is as a very abstract proof of itself : if you
agree that the formula is valid, then it is, if not, you must refine the proof to
a more detailed proof. An effective proof of the formula is also an object in the
calculus, but a concrete one with sufficient details. One can establish an order
between proofs, from very abstract to very concrete ones, and proof sketches in
between :

... w more abstract proof w .. w proof sketch w .. w more concrete proof w ... .

This refinement order may be read : (i) from left to right, from abstract
to concrete proofs, i.e. w-refinement amounts to backward refinement, (ii) from
right to left, from concrete to abstract proofs, i.e. reversed w-refinement amounts
to forward refinement. The reverse w-refinement is denoted by v, with the prop-
erty P v Q iff Q w P . “Forward (backward) refinement” is abbreviated to
“refinement” when the context is clear.

The ordering of proofs yields a complete lattice. The meet A
d

B is the most
abstract proof refining (i.e. more concrete than) A and B. The join A

⊔
B is



Constructing Isabelle Proofs in a Proof Refinement Calculus 139

the most concrete proof for which A and B are more concrete proofs. Moreover,
proofs are built using sequential composition, expressed by the # operator. Thus
A # B is the proof A followed by the proof B. The sequential composition is not
commutative. Indeed, the development of proofs relies on successive arguments
which make little sense without the ordering. We also have the 7→ and ←[ op-
erators which represent the entailment of proofs. Intuitively, A 7→ B says that
whenever we have A, then we also have B. Or in other words, the proof B is
developed assuming the proof A.

Also, the concept of abstract proofs induces the notion of validity of proofs.
A proof is said to be valid if it is an argument that can be verified as ”correct”.
For example, A 7→ A is valid from the structure of the proof. Thus, a proof may
be : (i) an effective proof, that is a valid proof, and (ii) an attempt of proof, that
is a proof term not yet validated, which may be “correct” or “incorrect”. The
proof refinement calculus supports the verification of proof validity, but not of
proof invalidity. In general, the more concrete a proof is, the easier it is to verify
its validity.

To be able to decide whether a proof is valid, a proof object 1 is introduced.
It represents validity, and is the identity for the # operator. Moreover, we want
to be more liberal when verifying validity. For example, (B # A) 7→ A should be
valid since A is in the antecedents. But it can not be refined to 1 within the
algebra. Therefore, for the purpose of verifying the validity, we introduce three
additional axioms preserving validity :

A # B w B # A (commutativity)
A # A w A (idempotence)

A w A # B (weakening) .

A proof refinement using these axioms is denoted by wval. A proof P is valid
iff it can be refined by 1 modulo the additional axioms, i.e. P wval 1. In the
previous example, (B # A) 7→ A can be refined to 1 by using the weakening
and commutativity axioms. However, keep in mind that the sole purpose of
this enriched algebra is the verification of validity; these axioms are undesirable
when developing proofs. With these axioms you loose the fundamental structure
of the proof. Thus, a typical process for proving a formula is : first, refine it to
a complete proof, then verify the validity of this proof.

formula w .. w concrete proof wval .. wval 1 .

Finally, two properties are required on the operators :

A 7→ B w C ≡ B w A # C
B ←[ A w C ≡ B w C # A .

Intuitively, if C is a proof that whenever A is valid, B is valid, then, to prove B,
we only have to prove A and C. Conversely, if we only have to prove A and C to
have B, then when we want B to be valid knowing A is valid, it suffices to prove
that C is valid. These properties highlight the Galois connections [10] between



140 C. Depasse

operators. Since sequential composition is not commutative, the operators 7→
and ←[ differ; this allows us to distinguish between entailing and being entailed.

With these definitions and requirements, except the validity axioms, we ob-
tain a rich structure of quantale [11], which is in fact equivalent to a standard
Kleene algebra [12].

Terminology. From now on, we abbreviate “proof refinement calculus” into
“proof calculus”.

3 The Isabelle Meta-Logic in the Proof Calculus

In this section, we show how to translate the meta-logic of Isabelle in the syntax
of the proof calculus. The main idea is to translate the proving part of the
Isabelle system in the proof calculus. This way, we can use the proof calculus
instead, manipulating structured proofs instead of meta-level formulae. First, we
present the principle of this translation. Then, we detail the translation of each
Isabelle meta-level operator.

3.1 Principle of the Mapping

We construct a mapping from meta-level formulae, which deals with truth values,
to proof objects, dealing with validity values :

τ : Isabelle meta-level formulae → proof objects .

Every meta-level formula Φ is translated into τ(Φ) which is valid if and only if
Φ is true. For example, the induction principle for naturals, using a schematic
variable ?n,

JP (0) ; ∧x.P (x) =⇒ P (Suc(x))K =⇒ P (?n)

is translated into the proof term

(
d

x : τ(P (x)) 7→ τ(P (suc(x)))) # τ(P (0)) 7→ d
?n : τ(P (?n)) .

The atomic proof objects, valid or not, represent the “atomic” meta-level for-
mulae, true or false, i.e. the meta-level formulae which do not contain any meta-
level connective. In the translation, each meta-level connective is mapped into
the operator of the proof calculus having the same semantics modulo the validity
axioms. In the example, =⇒ is translated into 7→ and ∧ into

d
.

In the next subsections, we will detail the following translation sketches :

τ(Φ =⇒ Ψ) ≈ τ(Φ) 7→ τ(Ψ)
τ(∧x.Φ) ≈ d

x : τ(Φ)
τ(A ≡ B) ≈ d

X : τ(X(A)) .= τ(X(B))
τ(Φ(?a)) ≈ d

?a : τ(Φ) ,

where Φ and Ψ are Isabelle meta-level formulae, i.e. of the type prop, A and
B are Isabelle formulae of any type. These sketches have to be made precise
because various type constraints and syntactical restrictions remain implicit, for
the sake of simplicity.



Constructing Isabelle Proofs in a Proof Refinement Calculus 141

3.2 The =⇒ Operator

The implication Φ =⇒ Ψ is true if and only if Ψ is true whenever Φ is true.
Hence, the proof object corresponding to Φ =⇒ Ψ must be valid if and only if
τ(Ψ) is valid whenever τ(Φ) is valid. This proof object is τ(Φ) 7→ τ(Ψ).

Remark. The Isabelle formula Φ1 =⇒ Φ2 =⇒ Φ (A) is thus translated into
τ(Φ1) 7→ τ(Φ2) 7→ τ(Φ) (B). In Isabelle, the formula (A) is abbreviated by
JΦ1;Φ2K =⇒ Φ. In the proof calculus, the object (B) is equal to τ(Φ2) # τ(Φ1) 7→
τ(Φ), by the Galois connection. In short, the Isabelle formula JΦ1;Φ2K =⇒ Φ
is translated into τ(Φ2) # τ(Φ1) 7→ τ(Φ). Note that the translation is based on
the validity properties of the proof objects. That means that the validity axioms
may be used. For example, τ(Φ2) # τ(Φ1) in general differs from τ(Φ1) # τ(Φ2)
since # is not commutative. But from the validity point of view, these are equal
since the commutativity axiom is available.

3.3 The ∧ Operator

Consider the Isabelle formula ∧x.P (x). This formula is true if P (x) is true for an
arbitrary parameter x. The corresponding proof object is simply

d
x : τ(P (x)).

Indeed, by definition of
d

, this proof object is valid if and only if τ(P (x)) is
valid whatever the parameter x, thus ∧x.P (x) is true if and only if

d
x : τ(P (x))

is valid.

3.4 The ≡ Operator

The ≡ operator is used for definitions. This operator is particular: its arguments
may be of any type, provided they are of the same type, but its result is a
meta-level truth value. For example, in m + n ≡ rec(m,n, λx y.Suc(y)), the
arguments m + n, rec(...) are of type “nat”, and the whole formula is of type
“prop”, a meta-level truth value. Thus, each such expression must be translated
in the proof refinement calculus.

To translate ≡-formulae into atomic proof objects would be incorrect. Indeed,
the ≡-formula Φ ≡ (Ψ1 =⇒ Ψ2) would be translated into an atomic proof object
which still contains a =⇒-operator that is not translated. This must be avoided.
Instead, we would like the translation of Φ ≡ (Ψ1 =⇒ Ψ2) to be something like
τ(Φ) .= τ(Ψ1 =⇒ Ψ2). The .=-operator does not exist in the proof calculus, but
can be defined as an abbreviation for a meet of entailments :

τ(Φ) .= τ(Ψ) , τ(Φ) 7→ τ(Ψ)
d

τ(Ψ) 7→ τ(Φ) .

Of course, this can be applied only where Φ and Ψ are meta-level formulae.
In the case of arguments A and B that are formulae of any type, we translate
A ≡ B in such a way that the corresponding proof object allows us to replace A
by B anywhere and conversely while developing proofs. The corresponding proof
object must consider any possible context. This leads to the definition



142 C. Depasse

τ(A ≡ B) ,
d

X : (X : [α] =⇒ prop), Xatomic : τ(X(A)) .= τ(X(B)) ,

where [α] =⇒ prop is a subterm in the proof calculus denoting the restriction on
the type of X in the Isabelle type system; and ”X atomic” means that X does
not contain any meta-level connective.

3.5 Schematic Variables

Above, we have defined the translation of a part of the meta-logic of Isabelle in
the proof calculus; this part is the one that does not use schematic variables.
Here, we tackle meta-level formulae containing schematic variables such as ?y.
The idea is to “quantify” the formulae over the schematic variables. For instance,

?y =⇒ Q is translated into
d

?y : (τ(?y) 7→ τ(Q)) .

The resulting proof object is valid iff τ(?y) 7→ τ(Q) is valid for every instantiation
of ?y. Note that this translation allows us to instantiate the schematic variables
as in the Isabelle system. In the previous example, ?y may be instantiated with
∧x.R(x) :

d
?y : (τ(?y) 7→ τ(Q)) v (

d
x : τ(R(x))) 7→ τ(Q) .

Every formula of Isabelle is firstly translated using the previously defined trans-
lations and then it is “quantified” with

d
.

Notation. Consider a proof object τ(Φ) and let SV be the syntactic sequence of
schematic variables occurring in Φ. We denote the meet over schematic variables
by

d
SV : τ(Φ).

3.6 Properties of the Operators

The meta-logic of Isabelle also contains logical rules that are mostly available
in the proof calculus. In the proof calculus, these rules are inherited from the
algebraic structure. For example, the counterpart of the rule

Φ 7→ Ψ Φ

Ψ
is the refinement τ(Ψ) w τ(Φ) # (τ(Φ) 7→ τ(Ψ)) .

However, the rules working on lambda terms must be declared as valid when
working on Isabelle terms. For example, in the case of the abstraction, we must
declare the proof object

d
x, a, b : a

.= b 7→ (λx.a) .= (λx.b) valid.



Constructing Isabelle Proofs in a Proof Refinement Calculus 143

4 The Isabelle Rules in the Proof Calculus

In this section we review the main deduction rules of Isabelle. In Isabelle, each
rule application is a proof component by itself : the proof consists in the sequence
of rules applied. In the proof calculus, successive applications of refinement rules
are not considered as proofs, but rather as steps to obtain proofs. We have two
orthogonal views of proofs : (i) the proof terms which are the logical justifications
of formulae, and highlight the structure of these justifications; (ii) the refinement
steps which serve to contruct proof terms; these refinement steps correspond to
Isabelle proofs. As a consequence, an inference rule

A

B

corresponds to a proof refinement PA v B, where PA includes all proof steps
entailing B from A. We insist : A represents the formula from which B can be
deduced, whereas PA represents the proof whose validity justifies the validity of
B.

We first describe how to translate the Isabelle rules into refinement rules
which allow to construct the proofs of the formulae deduced. We begin with the
most important rule, the resolution rule. The lifting rules are presented next.

4.1 Principle of the Mapping

Let us consider an Isabelle rule such as

A B

C
.

In the proof calculus, we should obtain a rule such as

τ(A) wval 1 τ(B) wval 1
τ(C) wval 1

.

This means that we should be able to show that whenever τ(A) and τ(B) are
valid, τ(C) is valid. Thus, to be consistent with the spirit of proof refinement, we
must refine τ(C) to a proof Pτ(A),τ(B) which is valid whenever τ(A) and τ(B)
are valid. This leads to a backward proof refinement of the form

τ(C) w Pτ(A),τ(B) i.e. Pτ(A),τ(B) v τ(C) .

To simplify the presentation, we consider formulae of the form JΦ1;Φ2;Φ3K
=⇒ Φ instead of the more general JΦ1; ...;ΦnK =⇒ Φ. The results can easily be
generalized. Also, the mapping τ is left implicit where it is clear that it must be
applied.

4.2 Resolution as Proof Refinement

We show how to find a refinement rule to construct proofs similarly to resolution
in Isabelle. We apply the principle given in the previous section.



144 C. Depasse

Basic Idea. We first illustrate the method on a simpler version of the resolution
rule, without schematic variables :

A =⇒ B B =⇒ C

A =⇒ C
.

In the proof calculus we should have :

τ(A) 7→ τ(B) wval 1 τ(B) 7→ τ(C) wval 1
τ(A) 7→ τ(C) wval 1

.

This inference rule is of course correct, but it does not construct the proof of
the conclusion. We must refine the conclusion so as to obtain a concrete proof
of the latter :

τ(A) 7→ τ(C)
w
(τ(B) ←[ (τ(A) 7→ τ(B))) 7→ τ(C) .

Note that we have refined the conclusion, which amounts to backward proving.
However, the resolution rule is forward. The forward refinement, corresponding
to the Isabelle-like in forward proving, is expressed as

(τ(B) ←[ (τ(A) 7→ τ(B))) 7→ τ(C)
v
τ(A) 7→ τ(C) ,

where P v Q iff Q w P . This forward refinement v goes from concrete proofs
to abstract ones : the refinement w is then read from right to left.

Forward Proofs. Let us now use the basic idea for the Isabelle resolution rule.
Consider for example

JΨ1;Ψ2;Ψ3K =⇒ Ψ
JΦ1;Φ2;Φ3K =⇒ Φ

(JΦ1;Ψ1;Ψ2;Ψ3;Φ3K =⇒ Φ)σ
(Ψσ ≡ Φ2σ) , (1)

where Eσ denotes E to which the substitution σ has been applied on schematic
variables. Rule (1) is written as follows in the proof calculus :

(
d

SV1 : (Ψ3 # Ψ2 # Ψ1 7→ Ψ)) w 1
(
d

SV2 : (Φ3 # Φ2 # Φ1 7→ Φ)) w 1
(
d

SV1 ⊕ SV2 : (Φ3 # Ψ3 # Ψ2 # Ψ1 # Φ1 7→ Φ))σ w 1
(Ψσ ≡ Φ2σ) . (2)

In (2), SV1 and SV2 are the syntactic sequences of schematic variables occurring
in any Φi or Ψi, respectively, and SV1 ⊕ SV2 is the concatenation of SV1 and
SV2. We assume no schematic variable with the same identifiers occurs in both
SV1 and SV2; if needed, we rename schematic variables before applying the rule.
Recall the difference between (i) the verification that a proof is valid, or in other



Constructing Isabelle Proofs in a Proof Refinement Calculus 145

words, that a formula is correct, and (ii) the construction of a concrete proof
from which the validity can be verified. In the same way, we first verify the
correctness of (2), and then we use this verification to construct the concrete
proof of the conclusion.

We verify the correctness of (2) using the proof calculus as follows :

(
d

SV1 ⊕ SV2 : (Φ3 # (Ψ3 # Ψ2 # Ψ1) # Φ1 7→ Φ))σ
wval {validity check using first assumption}
(
d

SV1 ⊕ SV2 : (Φ3 # Ψ # Φ1 7→ Φ))σ
w {Ψσ ≡ Φ2σ}
(
d

SV1 ⊕ SV2 : (Φ3 # Φ2 # Φ1 7→ Φ))σ
w {property of meet}
(
d

SV2 : Φ3 # Φ2 # Φ1 7→ Φ)
wval {validity check using second assumption}
1 .

In this refinement, we have proved that the conclusion of (2) is valid whenever
the premises are. This allows to perform the proof in the same way as done
with Isabelle. But our goal is to construct a proof term. That is, to start with
the premises to be used, and then to construct an explicit proof whose validity
entails the validity of the conclusion of (2). In the refinement hereabove, we
refine the conclusion to the second assumption. Why is this not the right proof
? Because we have used the first premise merely as a refinement rule. Instead,
it should explicitly appear in the constructed proof. Thus, in order to construct
proofs effectively, we have to postpone the use of the validity of the premises to
the step where the proof validity is checked :

(
d

SV1 ⊕ SV2 : (Φ3 # (Ψ3 # Ψ2 # Ψ1) # Φ1 7→ Φ))σ
w {property of meet, antimonotonicity}
(
d

SV1 ⊕ SV2 :
(Φ3 # (Ψ ←[ (d

SV1 : (Ψ3 # Ψ2 # Ψ1 7→ Ψ))) # Φ1 7→ Φ))σ
w {Ψσ ≡ Φ2σ}
(
d

SV1 ⊕ SV2 :
(Φ3 # (Φ2 ←[ (d

SV1 : (Ψ3 # Ψ2 # Ψ1 7→ Ψ))) # Φ1 7→ Φ))σ
w {property of meet, redundant use of SV1}d

SV2 : Φ3 # (Φ2 ←[ (d
SV1 : (Ψ3 # Ψ2 # Ψ1 7→ Ψ))) # Φ1 7→ Φ

wval {validity check using both assumptions}
1 .

Here we have a proof of the conclusion, which integrates all relevant de-
tails, and the validity of which can easily be checked from the validity of the
premises. In this proof term, it is required that under the three premises Φ3,
Φ2 ←[ (d

SV1...), and Φ1, the consequent Φ is valid. This requirement to estab-
lish the validity of the conclusion of rule (2) is more general than the resolution
principle as stated initially. Indeed, the premise Φ2 ←[ (d

SV1...) does not re-
quire that Φ2 unifies with Ψ , but only that Φ2 itself has (

d
SV1...) as a more

concrete proof.



146 C. Depasse

To sum up, the resolution rule (1) is expressed in the proof calculus by the
following forward refinement rule, using the reverse symbol v :

d
SV2 : Φ3 # (Φ2 ←[ (d

SV1 : (Ψ3 # Ψ2 # Ψ1 7→ Ψ))) # Φ1 7→ Φ
v {Ψσ ≡ Φ2σ}
(
d

SV1 ⊕ SV2σ : (Φ3 # Ψ3 # Ψ2 # Ψ1 # Φ1 7→ Φ))σ .
(3)

This rule can be instantiated automatically given the premises to be used. So,
the proof calculus can be used very much in the same way as Isabelle, but in
addition a proof of the conclusion is constructed, and the user can see a structured
justification of his/her concluded formula.

Backward Proofs. Actually, although the resolution rule is forward, it is also
used in Isabelle to simulate backward proving. In a similar way, the forward
refinement rule (3) can be modified to simulate backward proving. Indeed, we
may work with refinements from abstract to concrete proofs, that is backward
proving, and then retrieve the corresponding Isabelle rules to obtain the same
result. We only need to introduce an auxiliary condition.

A “backward” proof in Isabelle starts with a proof state Φ =⇒ Φ and then,
using resolution steps, changes it to JΦ1; ...;ΦnK =⇒ Φ. This is repeated until all
Φi are axioms. As a consequence, the proof of Φ should appear in the conclusion.
Thus, we have to move the proof to the other side of the refinement. Thanks to
the Galois connection, A ←[ B w C is equivalent to A w C #B. We can transform
(3) into the equivalent forward refinement :

(
d

SV2 : Φ3 # Φ2 # Φ1 7→ Φ)
v {Ψσ ≡ Φ2σ}
(
d

SV1 ⊕ SV2 :
(Φ3 # (Ψ3 # Ψ2 # Ψ1) # (

d
SV1 : (Ψ3 # Ψ2 # Ψ1 7→ Ψ)) # Φ1 7→ Φ))σ .

(4)

This forward refinement, as in Isabelle, simulates backward proving. Indeed, we
develop proofs using forward refinements from more concrete to more abstract
proofs, and then retrieve the backward proof in the antecedents of the conclusion.
Also, if Φ contains schematic variables which are instantiated, we have not a proof
of Φ but a proof of the instantiated Φ.

Fortunately, under a simple assumption, we can work on the antecedents only,
by backward proving, and then retrieve the corresponding forward refinements on
the form (4). The additional condition is that Φ does not contain any schematic
variable. Then, the forward refinement (4) can be transformed into

(
⊔

SV2 : Φ3 # Φ2 # Φ1) 7→ Φ
v {Ψσ ≡ Φ2σ}
(
⊔

SV1 ⊕ SV2 :
(Φ3 # (Ψ3 # Ψ2 # Ψ1) # (

d
SV1 : (Ψ3 # Ψ2 # Ψ1 7→ Ψ)) # Φ1))σ 7→ Φ .



Constructing Isabelle Proofs in a Proof Refinement Calculus 147

Note that the refinement bears on the antecedents only. Indeed, in the proof
calculus

A
w
B

implies
B 7→ C
w
A 7→ C

i.e.
A 7→ C
v
B 7→ C .

Thus, we may leave the conclusion Φ and work on the antecedents only :

(
⊔

SV2 : Φ3 # Φ2 # Φ1)
w {Ψσ ≡ Φ2σ}
(
⊔

SV1 ⊕ SV2 :
(Φ3 # Ψ3 # Ψ2 # Ψ1 # (

d
SV1 : (Ψ3 # Ψ2 # Ψ1 7→ Ψ)) # Φ1))σ .

(5)

This w-refinement goes from abstract to concrete proofs, i.e. we develop back-
ward proofs. Moreover, from a refinement step using (5), we can retrieve the
corresponding Isabelle states.

4.3 Lifting as Proof Refinement

Other important rules in the Isabelle system are the lifting rules. They are mainly
used to lift the rules before the use of resolution. We only give the translation of
these lifting rules for breviety. The justification of the translation can be found
in [13].

Lifting over Assumptions. In Isabelle, the lifting over assumptions Θ can be
stated as JΦ2;Φ1K =⇒ Φ

JΘ =⇒ Φ1;Θ =⇒ Φ2K =⇒ (Θ =⇒ Φ)
. (6)

The corresponding forward refinement is
d

SV : (Θ # (Θ 7→ Φ2 # Θ 7→ Φ1)) 7→ Φ2 # Φ1 # (Φ2 # Φ1 7→ Φ)
vd

SV : (Θ 7→ Φ2 # Θ 7→ Φ1) 7→ (Θ 7→ Φ) .
(7)

Indeed, to prove the second proof object, we show that knowing θ and θ entails
Φi, we have Φ1, Φ2 and these Φi entails Φ. Of course, this is valid if Φ2 #Φ1 7→ Φ.

Lifting over Parameters. The Isabelle rule for lifting over parameters is

JΦ2 # Φ1K =⇒ Φ

J∧x.Φ2
x;∧x.Φ1

xK =⇒ ∧x.Φx
, (8)

where Φx stands for Φ where all schematic variables ?a have been transformed
to ?a′(x), ?a′ being a new schematic function-variable. This allows to express
the dependence on x in the terms prefixed with ∧x. The corresponding forward
refinement is straightforward :

d
SV : Φ1 # Φ2 7→ Φ

v
(
d

SV x : ((
d

x : Φ1
x) # (

d
x : Φ2

x)) 7→ (
d

x : Φx)) ,
(9)



148 C. Depasse

where SV x is the syntactic sequence of schematic variables resulting from the
mapping ?a 7→?a′ on the variables in SV .

5 Example

To illustrate the proof calculus applied to the Isabelle system, we present the
refinement of a common theorem, which is the same as in [8]. This highlights
that proof refinement enhances understandability.

The proof objects are objects written in the context of the HOL object logic.
We will use the following part of HOL :

Connectives. The connectives used are :

Tr :: bool =⇒ prop ∀ :: ([α] =⇒ bool) =⇒ bool
−→ :: bool =⇒ bool ∃ :: ([α] =⇒ bool) =⇒ bool .

Note that Tr is the coercion from the type bool to the meta-level truth value
prop. This induce that every formula Tr P is translated by τ(Tr P ). Below, the
application of Tr is left understood.

Inference Rules. The inference rules are presented in the order of their use, and
are already expressed in the proof calculus language :

impI ,
d

?P, ?Q : (τ(?P ) 7→ τ(?Q)) 7→ τ(?P −→ ?Q)
allI ,

d
?P : (

d
x : τ(?P x)) 7→ τ(∀x. ?P x)

exE ,
d

?P, ?Q : (
d

x : (τ(?P x) 7→ τ(?Q))) # τ(∃x. ?P x) 7→ τ(?Q)
exI ,

d
?P, ?x : τ(?P ?x) 7→ τ(∃x. ?P x)

allE ,
d

?P, ?x, ?R : (τ(?P ?x) 7→ τ(?R)) # τ(∀x. ?P x) 7→ τ(?R)

The notation lifted over(r, pa) represents the rule r lifted over the parameters
and/or assumptions pa.

Theorem. (∃x. ∀ y. P x y) −→ (∀ y. ∃x. P x y)

Proof Refinement. We could refine the theorem by applying the same rules to
the same objects as in the Isabelle proof. However, we use the same rules in
the same order, but not on the same objects, as we aim at using the proof
calculus to construct a more structured proof. The objects refined at each step
are underlined.

τ((∃x. ∀ y. P x y) −→ (∀ y. ∃x. P x y))
w {impI}

(τ(∃x. ∀ y. P x y) 7→ τ(∀ y. ∃x. P x y))
# impI

w {allI}
(τ(∃x.∀ y. P x y)
7→ (

d
y : τ(∃x. P x y)) # allI)

# impI



Constructing Isabelle Proofs in a Proof Refinement Calculus 149

w {exE}
(τ(∃x. ∀ y. P x y)
7→ (

d
x : (τ(∀ y. P x y) 7→ (

d
y : τ(∃x. P x y))))

# τ(∃x. ∀ y. P x y)
# exE # allI)

# impI
w {exI lifted over y, τ(∀ y. P x y) and x}

(τ(∃x. ∀ y. P x y)
7→ (

⊔
?x :

d
x : (τ(∀ y. P x y) 7→ (

d
y : τ(P (?x x y) y))))

# lifted over(exI, y, τ(∀ y. P x y), x)
# τ(∃x. ∀ y. P x y) # exE # allI)

# impI
w {allE lifted over y, τ(∀ y. P x y) and x}

(τ(∃x. ∀ y. P x y)
7→ (

⊔
?x, ?x1 :

d
x : (τ(∀ y. P x y) 7→ (

d
y : τ(P x (?x1 x y))
7→ τ(P (?x x y) y))))

# (
d

x : (τ(∀ y. P x y) 7→ τ(∀xa. P x xa)))
# lifted over(allE, y, τ(∀ y. P x y), x)
# lifted over(exI, y, τ(∀ y. P x y), x) # τ(∃x. ∀ y. P x y) # exE # allI)

# impI
w {instantiation of ?x and ?x1}

(τ(∃x. ∀ y. P x y)
7→ (

d
x : (τ(∀ y. P x y) 7→ (

d
y : τ(P x y) 7→ τ(P x y))))

# (
d

x : (τ(∀ y. P x y) 7→ τ(∀xa. P x xa)))
# lifted over(allE, y, τ(∀ y. P x y), x)
# lifted over(exI, y, τ(∀ y. P x y), x) # τ(∃x. ∀ y. P x y) # exE # allI)

# impI

This is the final proof. It can be refined by 1, modulo the validity axioms. Thus,
the theorem is proved. Compared to proof trees [8], this proof is simpler to read
and understand. However, it contains only the main ideas of the proof, and not
the details such as instantiations, whilst proof trees do. Here, we must use the
refinement steps to deduce the right instantiations.

6 Conclusion

We have shown how to integrate the Isabelle system into the proof refinement
calculus. We mapped the formulae into the same semantic domain as proofs. By
adapting the Isabelle meta-language, we have extended the system with the con-
cept of abstract proofs. This interpretation of the Isabelle meta-logic allows us to
use the proof calculus as a deductive system, by using refinements correspond-
ing to Isabelle deduction rules. Our main aim has been to convince the reader
that this approach allows us to work with the same ease as in Isabelle, while
developing structured proofs. Thanks to the use of abstraction as fundamental
basis of the calculus, we may explore proofs at different levels of abstraction. For



150 C. Depasse

example, proofs may be presented hierarchically. However, these proofs can be
quite big, and it is not clear whether these proofs and refinement steps can be
easily and efficiently compressed.

Although we focused on Isabelle, our approach could be applied to other
existing systems. Indeed, the proof refinement calculus is generic enough to pro-
vide a common basis for various theorem proving assistants. Moreover, this would
allow various systems to interoperate, on the restriction that they use an appro-
priate version of a common theory. However, the integration of an other theorem
prover might not be as smooth as the one presented here. For example, to inte-
grate PVS, we can translate only the goals in the proof calculus, every rule is
translated into an object of the calculus.

Acknowledgments

The author would like to thank Michel Sintzoff for the helpful discussions on
this research, and Raphaël Collet, Micha Janssens and Yves Kamp for their
comments on this paper.

References

1. Database of existing mechanized reasoning systems, Stanford Univ., 1999,
http://www-formal.stanford.edu/clt/ARS/systems.html .

2. L. C. Paulson. Isabelle: A Generic Theorem Prover. LNCS 828, Springer, 1994.
3. S. Owre, N. Shankar, J. M. Rushby, D. W. J. Stringer-Calvert. PVS Prover Guide.

Computer Science Lab., SRI International, 1999.
4. B. Barras et al. The Coq Proof Assistant Reference Manual - Version 6.2. INRIA,

Rocquencourt, 1998.
5. N. A. Merriam, M. D. Harrisson. Evaluating the Interfaces of Three Theorem Prov-

ing Assistants. In : F. Bodart and J. Vanderdonckt (eds.), Proc. 3rd International
Eurographics Workshop on Design, Specification, and Verification of Interactive Sys-
tems, Springer, 1996.

6. M. Simons, M. Sintzoff. Algebraic Composition and Refinement of Proofs. In :
M. Johnson (ed.), Algebraic Methodology and Software Techhnology, pages 494-508.
LNCS 1349, Springer, 1997.

7. R. Bird, O. de Moor. Algebra of Programming, Prentice Hall, 1997.
8. s. Berghofer, T. Nipkow. Proof Terms for Simply Typed Higher Order Logic. In : M.

Aagaard, J. Harrison (eds.), Theorem Proving in Higher Order Logics, pages 38-52.
LNCS 1869, Springer, 2000.

9. M. Simons. The Presentation of Formal Proofs. R. Oldenbourg Verlag, 1997.
10. H. Herrlich, M. Hušek. Galois Connections. In : A. Melton (ed.), Mathematical

Foundations of Programming Semantics, pages 122-134. LNCS 239, Springer, 1985.
11. K. I. Rosenthal. Quantales and their Applications. Longman Scientific & Technical,

1990.
12. J. H. Conway. Regular Algebra and Finite Machines. Chapman and Hall, 1971.
13. C. Depasse. Constructing Isabelle Proofs in a Proof Refinement Calculus. Research

Report, UCL, 2001, ftp://ftp.info.ucl.ac.be/pub/reports/2001/rr2001-02.ps.gz .


