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Abstract. Building on a simple construction of the complex numbers and a proof
of the Fundamental Theorem of Algebra, we implement, as a HOL derived in-
ference rule, a decision method for the first order algebraic theory ofC based
on quantifier elimination. Although capable of solving some mildly interesting
problems, we also implement a more efficient semidecision procedure for the
universal fragment based on Gr¨obner bases. This is applied to examples includ-
ing the automatic proof of some simple geometry theorems. The general and
universal procedures present an interesting contrast in that the latter can exploit
the finding-checking separation to achieve greater efficiency, though this feature
is only partly exploited in the present implementation.

1 Introduction

The complex numbers have the interesting property of being algebraically closed, i.e.
every non-constant polynomialp(x) = anxn+an−1xn−1+ · · ·+a1x+a0 has a zero. This
implies that a polynomial overC has a factorization into linear factors(x−b1) · · · (x−
bn), which in turn gives rise to a relatively straightforward method of finding a quantifier-
free equivalent for any first order algebraic formula involving polynomial equations and
inequations, e.g.

(∃x y. ax2 +bx+c= 0∧ay2+by+c= 0∧¬(x = y))
≡ a = 0∧b = 0∧c= 0∨¬(a = 0)∧¬(b2 = 4ac)

In this paper, we describe the implementation of such a quantifier elimination pro-
cedure as a derived rule, i.e. one that proceeds at all stages constructing a formal proof.
Although it is capable of tackling some moderately interesting examples (like the one
above), it is not efficient enough for more difficult examples. We also implement a more
limited semi-decision procedure to prove valid purely universal formulas, i.e. those that
when put in prenex normal form have a quantifier prefix∀x1, . . . ,xn. · · ·. This is based
on the standard method of Gr¨obner bases, implemented so that it records the sequence
of operations in a way that can be turned into a HOL proof. This procedure is applied
to some examples derived by converting geometry theorems into coordinates.

2 Constructing the complex numbers

The complex numbers are isomorphic toR × R, so the HOL definition of the new
type is trivial. The mutually inverse type bijections are calledcomplex :R2 → C and
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coords :C → R2. We define convenient abbreviations for the real and complex parts of
a complex number, the natural embeddingCx:R → C and the imaginary uniti (we use
ii sincei is a useful variable name).

|- Re(z) = FST(coords(z))

|- Im(z) = SND(coords(z))

|- ii = complex(&0,&1)

It’s now straightforward to define the arithmetic operations on complex numbers in
the usual way (note that we overload the usual symbols forC andR), e.g.

|- w + z = complex(Re(w) + Re(z),Im(w) + Im(z))

|- w * z = complex(Re(w) * Re(z) - Im(w) * Im(z),

Re(w) * Im(z) + Im(w) * Re(z))

To help get started, we implement a trivial tool for very simple algebraic identities,
which simply rewrites with definitions to decompose a complex equation into a pair
of real equations for the real and complex parts, then applies the standard HOL Light
semidecision procedure forR:

let SIMPLE_COMPLEX_ARITH_TAC =

REWRITE_TAC[COMPLEX_EQ; RE; IM; Cx;

complex_add; complex_neg; complex_sub; complex_mul] THEN

REAL_ARITH_TAC;;

This can prove most of the routine ring-type algebraic identities automatically, e.g:

let COMPLEX_RNEG_UNIQ = prove

(‘!x y. ( x + y = Cx(&0)) = (y = --x)‘,

SIMPLE_COMPLEX_ARITH_TAC);;

let COMPLEX_DIFFSQ = prove

(‘!x y. (x + y) * (x - y) = x * x - y * y‘,

SIMPLE_COMPLEX_ARITH_TAC);;

Although not very efficient or wide-ranging, this saves a lot of tedious manual
proofs during the “bootstrapping” phase. Later on, this simple tactic is subsumed by
a more advanced semidecision procedure. In any case, when it comes to properties of
the inverse, we need to perform a few manual proofs, though they are not at all difficult.
We also need to define complex moduli; note that the type ismod:C → R, since we of-
ten want to make inequality comparisons. We could, of course, work consistently in the
real-valued subset of the complex numbers, but theorems would then become cluttered
with conditions that are more conveniently encoded in the types.
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|- mod(z) = sqrt(Re(z) pow 2 + Im(z) pow 2)

Many of the properties of this operation are also trivial to prove. Slightly harder is
the triangle inequality, which requires a larger 13-step proof:

|- !w z. mod(w + z) <= mod(w) + mod(z)

We also need to define complex square roots; again the definition is easy enough in
terms of the existing real function, though a bit messier than might be expected because
of the special case of a real-valued complex number:

|- csqrt(z) = if Im(z) = &0 then

if &0 <= Re(z) then complex(sqrt(Re(z)),&0)

else complex(&0,sqrt(--Re(z)))

else complex(sqrt((mod(z) + Re(z)) / &2),

(Im(z) / abs(Im(z))) *

sqrt((mod(z) - Re(z)) / &2))

though the proof of its basic property:

|- !z. csqrt(z) pow 2 = z

requires a fairly large manual proof.

3 The fundamental theorem of algebra

To state the fundamental theorem of algebra we need to define polynomial functions.
We could simply represent them as explicit finite summations, but to make the generic
statement of later theorems simpler, we define a representation of univariate polynomial
functions as lists of coefficients (without gaps, starting at the constant term). In fact, we
simply re-used the existing HOL Light theory of real polynomial functions [11]. Essen-
tially all the proofs were simply taken over with trivial changes, except for some with
no complex analog (e.g. those concerned with ordering or, like Sturm’s theorem, spe-
cific toR), or where relevant concepts like differentiability had not yet been transferred
over toC . The core definition is simply:

|- (poly [ ] x = Cx(&0)) /\

(poly (CONS h t) x = h + x * poly t x)

The cleanest statement of the Fundamental Theorem of Algebra uses the auxiliary
notion of a constant function:

|- constant f = !w z. f(w) = f(z)

namely:

|- !p. ˜constant(poly p) ==> ?z. poly p z = Cx(&0)
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However, we sometimes want a more syntactic criterion for a polynomial to be
nonconstant. The following states that a complex polynomial has a root unless the list
of coefficients starts with a nonzero constant and has all other coefficients zero (note
that our representation of polynomial functions does not impose canonicality).

|- !p. ˜(?a l. ˜(a = Cx(&0)) /\ ALL (\b . b = Cx(&0)) l /\ (p = CONS a l))

==> ?z. poly p z = Cx(&0)

We formalize a proof taken from [8], an inductive refinement [19, 9] of the classic
‘minimum modulus’ proofà la Argand. The crucial analytical component is the asser-
tion that a continuous complex function attains its minimum modulus in a closed disc
in the complex plane. This is essentially an assertion that a closed disc inC is topo-
logically compact. As is well-known, there are numerous equivalent characterizations
of compactness. We chose the Bolzano-Weierstrass type formulation ‘every sequence
in the set has a convergent subsequence’, since this seemed the simplest to derive from
the analogous result fromR (already proved in HOL) by handling the real and complex
coordinates successively and using the simple lemma:

|- !x y. mod(x - y) <= abs(Re(x) - Re(y)) + abs(Im(x) - Im(y))

The compactness theorem proved is as follows, wheresubseq f means thatf :N →
N is a strictly increasing function, and hence parametrizes a subsequence.

|- !s r. (!n. mod(s n) <= r)

==> ?f z. subseq f /\

!e. &0 < e ==> ?N. !n. n >= N ==> mod(s(f n) - z) < e

This is now easily used to show that a polynomial attains its minimum modulus
on a finite disc. We also prove that a nonconstant polynomial goes to infinity as the
magnitude of its argument does. Thus we can find a closed disc outside which the
polynomial has larger magnitude than it does at (say) zero. It follows that the attained
minimum modulus inside such a disc is in fact theoverallminimal modulus:

|- !p. ?z. !w. mod(poly p z) <= mod(poly p w)

All that remains is to prove that for a nonconstant polynomial this modulus is zero,
by showing that if not, we could actually find another point where the modulus is
smaller, contradicting minimality. We start by showing that we can always reduce the
magnitude of a unimodular complex number by moving in one of the four compass
directions in the complex plane:

|- !z. (mod(z) = &1)

==> mod(z + Cx(&1)) < &1 \/

mod(z - Cx(&1)) < &1 \/

mod(z + ii) < &1 \/

mod(z - ii) < &1
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Now, in a sufficiently small neigbourhood of a point, a polynomial is dominated by
the term of lowest degree. So we essentially just need to be able to find a ‘direction’d
so that|1+bznq(z)|< 1 for all z= td with t ∈ R sufficiently small. First we prove:

|- !b n. ˜(b = Cx(&0)) /\ ˜(n = 0)

==> ?z. mod(Cx(&1) + b * z pow n) < &1

by wellfounded induction onn. If n is even we can just apply the inductive hypothesis to
n/2 and take complex square roots. Otherwise ifn is odd, note that the ‘compass point’
values{1,−1, i,−i} are merely permuted byx 7→ xn so we can reduce the problem to
the special casen = 1, when it’s simply a matter of performing division.

Now we prove by interlocking induction on degrees that the fundamental theorem
holds together with a stronger form of the above lemma. Using this technique, we avoid
separately having to justify the existence of complexnth roots forn> 2. More precisely,
let P(n) be the statement that the fundamental theorem holds for polynomials of degree
n andQ(n) be the statement that for any polynomialh(z) of degreen of the form:

h(z) = 1+zk(b+zg(z))

there is au with |h(u)|< 1. What we prove is

– (∀k. k < n =⇒ P(k)) =⇒Q(n)
– Q(n) =⇒ P(n)

The second part is the standard minimum modulus argument sketched above. For
the first part, note that if we simply haveh(z) = 1+bzk, i.e.g(z) = 0, then we already
have the result as proved above. Otherwise we havek < n so by theP(k) hypothesis we
can find a ‘direction’d ∈ C such that 1+bdk = 0. If t ∈ R, we have

h(td) = 1+(td)k(b+(td)g(td))

= 1− 1
b

tk(b+(td)g(td)

= 1− tk(1− d
b

tg(td))

and sinceg is continuous, we can maket sufficiently small that|dbtg(td)|< 1 and hence
|h(td)|< 1.

4 Full quantifier elimination procedure

It’s a simple consequence of the FTA that every complex polynomial splits into linear
factors. For in general (not just over the complexes) ifp(a) = 0 thenx−a dividesp(x),
and so we can proceed by induction on the degree. This has the interesting consequence
that the formula:

∀x. p(x) = 0 =⇒ q(x) = 0
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is equivalent top | q∂(p) where∂(p) denotes the degree ofp and ‘|’ the divisibility
relation on polynomials. For if we imagine the two polynomials split into linear factors,
the assertion becomes:

∀x. (x−a1) · · · (x−an) = 0 =⇒ (x−b1) · · · (x−bm) = 0

That is, eachai must also be among thebj and hence eachx−ai must occur among
thex−bj . This doesn’t imply thatq is divisible byp, since there may be repetitions of
ai in p. However there may only be as many asn repetitions wheren = ∂(p), so wedo
havep | qn. In HOL:

|- !p q. (!x. (poly p x = Cx(&0)) ==> (poly q x = Cx(&0))) =

p divides (q exp (degree p)) \/

((poly p = poly []) /\ (poly q = poly []))

Note that, as so often when proving theorems formally, we have to note a degenerate
case that it’s easy to overlook informally, namely that the formula is also true whenp
andq are identically zero; in this case∂(p) = 0 soq∂(p) = 1. In keeping with the rest of
the development in terms of polynomial functions, we define divisibility in these terms,
with ** denoting the syntactic multiplication operation on coefficient lists.

|- p1 divides p2 = ?q. poly p2 = poly (p1 ** q)

The equivalence of the quantified implication and divisibility forms the core of the
quantifier elimination algorithm. It is a standard result that for full quantifier elimina-
tion it suffices to be able to eliminate a single existential quantifier whose scope is a
conjunction of equations and negated equations:

∃x. p1(x) = 0∧·· ·∧ pm(x) = 0∧q1(x) 6= 0∧·· ·∧qp(x) 6= 0

for then one can eliminate any quantifier whose scope is quantifier-free by first trans-
forming it to an existential one if necessary by(∀x. p) ≡ ¬(∃x. ¬p), putting the body
into disjunctive normal form and then distributing the existential quantifier over the
disjuncts. This can then be done repeatedly starting with the innermost quantifier. So
we now concentrate on that special case; we apply the indicated transformations in an
outer wrapper around the core procedure for a single existential quantifier. Actually
we optimize the DNF transformation slightly for the special case¬(p∧q∨¬p∧ r) =
(p∧¬q∨¬p∧¬r), since as will be seen shortly these “conditionals” often appear in
the formulas resulting from quantifier elimination because of case splits.

Note that if there is just one equation and one inequation in the conjunction, then
this simply reduces to the consideration of divisibility, because

(∃x. p(x) = 0∧q(x) 6= 0)≡ ¬(∀x. p(x) = 0 =⇒ q(x) = 0)

We can also easily deal with two degenerate cases: if there is just one equation,
∃x. p(x) = 0 is, by the fundamental theorem, equivalent to a simple case analysis on
the coefficients (either the polynomial is constant zero or nonconstant), and if there is
just one inequation,∃x. q(x) 6= 0 is equivalent to one of the coefficients being nonzero.
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Thus, we just need to reduce the conjunction to the special case of at most one equation
and at most one inequation. To reduce the number of equations, we pick the equation
of lowest apparent degreep(x) = axn +q(x), and perform a case split over whether its
leading coefficienta is zero. (If it is simply a constant or can be resolved simply from
context, we avoid generating a split, but in general it can be an arbitrary polynomial in
other variables.) If we keep getting zero, then eventually we get rid of all the equations.
Otherwise, we eventually find an equation with nonzero leading coefficient, and this
can be used to perform elimination with the other equations and inequations, reducing
their degree. The basic theorem justifying such simplification is trivial:

|- (p = Cx(&0)) /\ ˜(a = Cx(&0))

==> !q b. (q = Cx(&0)) = ( a * q - b * p = Cx(&0))

wherea is the leading coefficient ofp andb the leading coefficient ofq multiplied by
the appropriate power ofx to ensure that the subtraction cancels the leading term ofq.
For example, ifp(x) = yx2 + 3zxandq(x) = zx3 + y2x+ 7 we havea = y and choose
b = zx, so:

aq(x)−bp(x) = y(zx3 +y2x+7)−zx(yx2+3zx)
= (y3−3z2)x+7y

Continuing in this way, using the lowest-degree equation each time, we eventually
reach a state in which we have either no equations at all or just one. Note that in the latter
case the final polynomial equation is actually the GCD of the original set of equations,
given the assumptions arising from case splits. Whether or not we have an equation left,
we can combine all the inequations into one just by repeatedly using:

qi(x) 6= 0∧qi+1(x) 6= 0≡ qi(x)qi+1(x) 6= 0

Thus we have reached the stage of simplicity where (at most) we just need to com-
pute the divisibility relation of two polynomials in terms of their coefficients. This is
quite straightforward, since we can perform a similar kind of elimination based on the
following theorem:

|- ˜(a = Cx(&0))

==> p divides p’

==> (!x. a * poly q x - poly p ’ x = poly r x)

==> (p divides q = p divides r)

and then, when we’ve finally performed elimination as much as possible, can settle the
matter with:

|- !p q. p divides q ==> degree(p) <= degree(q) \/ (poly q = poly [])

In all cases, the quantified variable is successfully eliminated. Of course, this gen-
erally only comes at the cost of increasing the complexity of the polynomials in other
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variables. However, compared with the more complicated and difficult quantifier elim-
ination procedure forR described in [12], the efficiency of the present procedure is not
calamitously bad. This is to be expected, as the decidability ofR appears to be an in-
herently more difficult problem [7]. To start with a trivial example1, which is solved in
4.6 seconds.2

|- !x y.

(x pow 2 = Cx (&2)) /\ (y pow 2 = Cx (&3))

==> ((x * y) pow 2 = Cx (&6))

The following takes 10.5 seconds. It is a genuine ‘practical’ example in that, when
verifying in HOL the polylogarithmic series forπ presented in [1] we wanted to prove
thatx2 +

√
2x+ 1 has no real roots. The following theorem presents a simple route to

that result since as it is universal its restriction toR also holds, and clearlyx4 + 1 has
no real roots.

|- !x a.

(a pow 2 = Cx (&2)) /\ (x pow 2 + a * x + Cx (&1) = Cx (&0))

==> (x pow 4 + Cx (&1) = Cx (&0))

Generally, the runtimes increase dramatically with the number of quantifiers. For
example, the following, giving a criterion for a general quadratic to have two distinct
(complex) roots, takes hours:

|- !a b c.

(?x y. (a * x pow 2 + b * x + c = Cx(&0)) /\

(a * y pow 2 + b * y + c = Cx(&0)) /\

˜(x = y)) =

(a = Cx(&0)) /\ (b = Cx(&0)) /\ (c = Cx(&0)) \/

˜(a = Cx(&0)) /\ ˜(b po w 2 = Cx(&4) * a * c)

However, note that although we have hitherto just presented examples of decid-
ing closed formulas, one can simply use it to eliminate some quantifiers, leaving other
variables as parameters. Doing so on the LHS of the above example works relatively
quickly (25.8 seconds), though the result arising from elimination is not immediately
recognizable as equivalent to the simple condition on the above RHS without a bit more
manual work, mainly case-splitting over whether variables are zero.

5 Gröbner bases

Although the above procedure is amusing, and satisfactory for some simple problems,
it would be nice to have a more efficient procedure. The main reason for the inefficiency
1 Dedekind once observed when presenting a formal foundation of the real numbers that this

“trivial” fact had not hitherto been proved rigorously. Note that our procedure does not make
any special optimization but twice applies the standard algorithm presented above.

2 All timings are on my 366MHz Pentium II laptop, running CAML Light 0.74 under Red Hat
Linux 6.0. Note that CAML Light is an interpreted language.
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of the general procedure is that when eliminating one quantifier it causes a blowup in
the degree of other variables. It would be nicer if we could eliminate a series of like
quantifiers∃x1, . . . ,xn en bloc. If we can do that, an additional simplification is that we
don’t need to deal with negated equations, since they can be eliminated at the cost of
introducing new quantified variables via:

(x 6= y)≡ ∃z. (x−y)z+1= 0

This transformation is known as theRabinowitsch trick, and is widely used as a
theoretical device when proving the full Hilbert Nullstellensatz from a weak special
case (see below). Seidenberg [25] also used it when presenting his quantifier elimination
procedure forR and Kapur [15] appears to have been the first to use it in a practical
computer implementation.

Although there are general methods that can eliminate a block of existential quan-
tifiers even when the polynomials include other variables, these are complicated. We
elected just to implement a special case: proving purely universal formulas by negating
them and refuting the (purely existential) negation. As usual, after a DNF transforma-
tion this comes down to deciding whether a conjunction of polynomial equations:

p1(x1, . . . ,xn) = 0∧·· ·∧ pk(x1, . . . ,xn) = 0

has a solution. Since we are only aiming at a semi-decision procedure, we just need
to be able to provenegativeresults of the form ‘there is no common solution to this
conjunction of equations’. It turns out that the standard Gr¨obner basis algorithm [27]
invented by Buchberger [3] allows us to do this easily.

The Gröbner basis algorithm has a strong resemblance to Knuth-Bendix comple-
tion [17], which it predated by several years. The basic idea is to order the monomials
axk1

1 · · ·xkn
n in some wellfounded fashion and treat a polynomial (i.e. sum of monomi-

als)m1 + · · ·+mp = 0 as a rewrite rulem1 →−(m2 + · · ·+mp) to be applied to (some
monomial of) the other polynomials. Given some basic properties of the monomial or-
dering such as monotonicity under monomial multiplication, this rewriting relation ‘→’
is easily seen to be wellfounded by the multiset ordering, as it replaces a monomial with
a finite number of monomials of smaller degree. However it is not in general confluent,
and the same polynomial may be reduced to different irreducible forms. Just as with
completion, the algorithm proceeds by considering how a ‘most general’ monomialm
can be rewritten in two different ways by other polynomial rewrites, saym→ m1 and
m→ m2, analogous to critical pairs in Knuth-Bendix completion. If these are not join-
able by more rewrites, thenm1−m2 = 0 is itself converted into a new rewrite rule,
usually itself generating additional critical pairs, and the process continues. Unlike in
the case of completion, it is not hard to show that Buchberger’s algorithm always termi-
nates in success, giving a confluent rewrite set known as aGröbner basis. Buchberger’s
algorithm can in principle be catastrophically inefficient, but in practice it often works
very well.

Note that if the initial polynomials are all zero, then so are all the polynomials
derived, since they are all of the form

q1(x1, . . . ,xn) · p1(x1, . . . ,xn)+ · · ·+qn(x1, . . . ,xn) · pn(x1, . . . ,xn)
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If we end up deriving a nonzero constant polynomial, therefore, it contradicts the
fact that the input polynomials have a common zero. One can in fact show that the con-
verse is true: if the input polynomials have no common zero, then a nonzero constant
polynomial will be derived. To prove this, however, requires a slightly more delicate
analysis of properties of Gr¨obner bases and a proof of the Hilbert Nullstellensatz for
multivariate polynomials. If we wanted to be able tofalsify universal formulas, we
would have to formalize this in HOL; though not difficult in principle it’s relatively
hard work.

However since we aim only to verify universal formulas, and fail otherwise, all we
need is the mathematically trivial observation that a linear combination of polynomials
of value zero cannot be equal to a nonzero constant. Thus, we just implement Buch-
berger’s algorithm in a way that records how the new polynomials can be expressed as
“linear” combinations (with polynomial coefficients) of the input polynomials. Then at
the end we get a sequence of polynomials:

q1(x1, . . . ,xn) · p1(x1, . . . ,xn)+ · · ·+qn(x1, . . . ,xn) · pn(x1, . . . ,xn) = 1

and by verifying this in HOL, we trivially derive

(∃x1, . . . ,xn. p1(x1, . . . ,xn) = 0∧·· ·∧ pk(x1, . . . ,xn) = 0) =⊥
A nice feature of separating the reconstruction of the proof from the details of the

algorithm is that, apart from some additional recording, we can implement the standard
algorithm with arbitrary optimization techniques. At present, our implementation is
fairly naive, but at least implements some of the simpler criteria for avoiding redundant
critical pairs. If we really intended to tackle challenging examples, we could tune it
in many ways without affecting the later proof reconstruction, since logging is already
built into the basic polynomial operations.

The ‘coefficients’qi(x1, . . . ,xn) can be quite large, and we should simplify them by
further reductions with the initial polynomials. At present we do not do so, but intend to
in the future. In this way, it should always be possible to obtain rather compact certifi-
cates, suggesting that the Buchberger algorithm can, contrary to the negative remarks
made in [12], exploit the finding-checking separation for efficiency. In fact, it’s quite
striking that the first reasonably efficient fully-expansive decision procedure for linear
arithmetic overN , implemented by Boulton [2] used exactly the same kind of certifi-
cate to separate search from inference-based proof reconstruction, the only differences
being that thepi were linear polynomials and theqi constants. As is pointed out in [22],
similar certificates can be produced by algorithms that are more efficient on large prob-
lems, such as the standard simplex algorithm for linear programming [6]. We consider
the ability to separate proof and checking in this way to be fundamentally important
in implementing certain (semi)decision procedures both soundly and reasonably effi-
ciently in a fully-expansive context, often much more practical and flexible than the use
of so-called ‘reflection principles’ [10].

In order to verify the final polynomial identity in HOL, we implemented simple rou-
tines for maintaining polynomials in canonical sum-of-monomials form ordered accord-
ing to the monomial ordering used (total degree then inverse lexicographic). Though
trivial in principle, this actually took more time to implement than (our naive form
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of) Buchberger’s algorithm itself! We tested the polynomial normalization routines on
some identities connected with Waring’s problem, taken from [21]. In fact, we discov-
ered that one of them (Theorem 3.3) is stated wrongly:3

(x2
1 +x2

2 +x2
3+x2

4)
4 = 1

840(x1±x2±x3±x4)8+
1

5040Σ1≤i< j<k≤4(2xi ±xj ±xk)8+
1
84Σ1≤i< j≤4(xi ±xj)8+
1

840Σ1≤i≤4(2xi)6

The 6th power in the last term on the right should be the 8th, and in the second term,
the multiple of 2 should be distributed (separately) overxj andxk symmetrically, lead-
ing to a 48-way sum. The former is expected from the context, while the latter should
be obvious given that all other terms in the sum treat the variables symmetrically. We
confess that we consulted the original source [14] before making these trivial observa-
tions.

The Gröbner-based method is usually far more efficient on purely universal for-
mulas than the general procedure outlined above, and by more intelligent simplifica-
tion of the coefficients, it should be possible to further reduce the time spent on the
proof-checking phase. For example, the following takes 1.8 seconds, whereas the full
quantifier elimination procedure takes 203.2 seconds.

|- !a b c x y.

(a * x pow 2 + b * x + c = Cx(&0)) /\

(a * y pow 2 + b * y + c = Cx(&0)) /\

˜(x = y)

==> (a * (x + y) + b = Cx(&0))

On larger examples, the Gr¨obner basis procedure is often quite fast where the full
quantifier elimination procedure cannot feasibly be applied because it uses too much
time or memory.

6 Geometry examples

Note that using Gr¨obner bases to prove universal formulas doesn’t, unlike the full quan-
tifier elimination process, depend on special properties of the complex numbers. The
basic procedure would work equally well forR or even forQ . The only advantage of
working overC is that we can draw negative conclusions from failure (and this only
externally and informally without further HOL formalization). But then, if a universal
formula is true overC , it’s also true overR andQ , since these are subinterpretations.
So given the complex procedure, we can easily derive a real procedure by restriction.
The code simply rewrites a formula with homomorphism properties ofCx then calls the
complex procedure:

3 The± sign implicitly means that all possible combinations of the signs are summed, e.g.
(x1±x2±x3)2 means(x1 +x2 +x3)2 +(x1 +x2−x3)2 +(x1−x2 +x3)2 +(x1−x2−x3)2.
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let GROBNER_REAL_ARITH =

let trans_conv = GEN_REWRITE_CONV TOP_SWEEP_CONV

[GSYM CX_INJ; CX_POW; CX_MUL; CX_ADD; CX_NEG; CX_SUB] in

fun tm -> let th = trans_conv tm in

EQ_MP (SYM th) (COMPLEX_ARITH(rand(concl th)));;

Naively it might be considered fairly improbable that interesting universal formulas
that are true overR, except those that amount to pure algebraic simplification, would
actually turn out to be true in the broader interpretation ofC . However, it was a remark-
able observation by Wu [28] that a very broad class of geometry problems formulated
in terms of coordinates also turn out to be true when the individualx andy coordi-
nates themselves are generalized toC . Wu actually developed his own special decision
method related to thecharacteristic setmethod [23] in the field ofdifferential algebra
[24]. Although Wu’s method is often very efficient and has some particular advantages,
it is often possible to apply Gr¨obner bases with reasonable results. For an excellent
comparative survey of the application to geometry theorem proving of the characteris-
tic set method, Gr¨obner bases and yet another technique calledDixon resultants, see
[16].

There seems no entirely satisfactory theoretical explanation for just why so many
geometrical statements turn out to be true if the natural algebraic formulation is ex-
tended to the complex numbers, and any explanation must at present be essentially
heuristic. The surprisingly rare cases where this property fails often involve the notion
of distance. For example, consider the (true) statement in Euclidean geometry that if
three distinct points(x1,y1), (x2,y2) and(x3,y3) all lie on a circle with centre(x0,y0),
and also all lie on a circle with centre(x′0,y′0), then in factx′0 = x0 andy′0 = y0. However,
as a moderately lengthy run of the Gr¨obner basis method will confirm, this statement is
not in fact valid over the complex numbers. One counterexample is that the three points
are(2,2i), (3,3i) and (4,4i) while the two centres are(0,0) and (1, i). However, we
can see that if we explicitly rule out the possibility of the radial distance being zero,
the statement becomes valid even overC . Another way to describe this is to say that
the line joining the centres to the points on the circumference arenon-isotropic, i.e. not
perpendicular to themselves.

We define certain geometric concepts in HOL in terms of coordinates in a fairly
obvious way. A point is represented as a pair of real numbers and geometrical proper-
ties are expressed in terms of thex andy coordinates of points using first and second
projectionsFST andSND. For example:



Complex quantifier elimination in HOL 171

|- collinear a b c =

((FST a - FST b) * (SND b - SND c) =

(SND a - SND b) * (FST b - FST c))

|- is_midpoint b (a,c) =

(&2 * FST b = FST a + FST c) /\

(&2 * SND b = SND a + SND c)

|- is_intersection p (a,b) (c,d) =

collinear a p b /\ collinear c p d

Now we code up a trivial tacticGEOMTAC that expands out definitions and converts
points into pairs of coordinates. In conjunction withGROBNERREAL ARITH we can now
prove some simple geometric theorems. For example, the Centroid theorem is solved in
13.71 seconds (mostly spent in HOL proof reconstruction)

|- is_midpoint d (b,c) /\

is_midpoint e (a,c) /\

is_midpoint f (a,b) /\

is_intersection m (b,e) (a,d)

==> collinear c f m

and Gauss’s theorem in 17.01 seconds

|- collinear x a0 a3 /\

collinear x a1 a2 /\

collinear y a2 a3 /\

collinear y a1 a0 /\

is_midpoint m1 (a1,a3) /\

is_midpoint m2 (a0,a2) /\

is_midpoint m3 (x,y)

==> collinear m1 m2 m3

However, the procedure can still take a long time on more difficult problems; the-
orems involving midpoints tend to be particularly easy since they give rise to linear
equations. To make our system into a serious tool for geometry theorem proving would
require extensive tuning and experimentation. Moreover, as Wu originally pointed out,
many geometric theorems are only true in the presence of certainnondegeneracycon-
ditions, e.g. that the three points of a “triangle” are not collinear. Whereas Wu’s method
can find such conditions automatically, we have not implemented any such automatic
method. It often happens that if necessary conditions of this type are left out, not only
goes the Gr¨obner basis method not succeed, but the runtimes are often dramatically
worse before failure occurs, making the interactive tracking down of such conditions
quite tedious.
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7 Conclusions and related work

The complex numbers have been constructed in theorem provers several times. The first
machine-checked versions of the Fundamental Theorem of Algebra seems to have been
done in Mizar [20]. A completely constructive proof has also been formalized in the
Coq prover by a team in Nijmegen.4

Several quantifier elimination methods have been coded in HOL as derived infer-
ence rules. The subject really starts with the pioneering work of Boulton [2], who pre-
sented an implementation of some classic semidecision procedures for universal and ex-
istential theories of linear arithmetic overN . This not only showed that fully-expansive
implementation of decision procedures could be practical and useful, but was also in-
fluential in sharpening the appreciation of how the finding-checking separation, already
used e.g. in an early first order prover for HOL [18], can be exploited, a point we have
further emphasized here. The first full quantifier elimination method to be implemented
as a derived rule seems to have been real quantifier elimination, both linear and nonlin-
ear, by the present author [12]. More recently Norrish, in as yet unpublished work,5 has
implemented a full quantifier elimination procedure for linear arithmetic onZbased on
Cooper’s algorithm.

Although this work seems to be the first implementation of Buchberger’s algorithm
with a fully-expansive proof reconstruction, there have actually been two formal ver-
ifications of a version of Buchberger’s algorithm by Th´ery [26] and by Coquand and
Persson [5]. Although both verifying algorithms and reconstructing proofs have their
strengths and weaknesses, we think the latter approach is quite promising as an ap-
proach to actually using the method as a decision procedure in a theorem prover, be-
cause it lets us make essentially arbitrary algorithmic and implementation optimizations
provided we retain logging. As we have noted, it seems likely that the proof reconstruc-
tion could be done much more efficiently if the resulting coefficient polynomials were
reduced.

Wu’s method has been impressively applied to a huge range of geometry problems
by Chou [4], and we have taken some examples and coordinate translations from there.
The use of Gr¨obner bases in geometry theorem proving has been investigated by several
researchers, notably Kapur [15]. In comparison, our examples above are quite trivial,
but the approach of performing fully-expansive proofs in HOL seems to have potential
for two reasons. First, we have greater reliability of results. Second, by working in
a general high-level framework such as HOL we are not obliged to be satisfied with
treating the geometric concepts as unanalyzed definitions, but can attempt to relate them
to more intuitive formalizations, e.g. parallelism in terms of non-intersection. Indeed,
it would be interesting to try to relate the coordinate definitions to more traditional
definitions in the style of Euclid’sElements, and to the modern axiomatic treatment of
geometry given by Hilbert [13].

4 Seehttp://www.cs.kun.nl/gi/projects/fta/xindex.html .
5 Seehttp://www.cl.cam.ac.uk/ mn200/research .
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