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Abstract. An existential theorem, for the specification or implemen-
tation of hardware, states that for any inputs there must exist at least
one output which is consistent with it. It is proved to prevent an in-
consistent model being produced and it is required to formally import
the verification result from one verification system to another system.
In this paper, we investigate the verification of the existential theorems
of hardware specifications and implementations. Whilst much of the ap-
proach is generally applicable, we specifically consider a hybrid system
linking the MDG hardware verification system with the HOL interactive
proof system. We investigate existential theorems based on the syntax
and semantics of the MDG input language (MDG-HDL) in HOL. We
define an output representation for each component in the MDG-HDL
component library. We summarize a general method which is used to
prove the existential theorem for any MDG-HDL program. The method
can also be used to solve other existentially quantified goals.

1 Introduction

Combining theorem proving systems with symbolic state enumeration systems
opens a way for theorem proving systems to be applied more widely to the real
world. Many hybrid tools have been developed such as the Hol-Voss system [9],
Forte [1], HOL-MDG [10] etc. Normally, the verification results from one system
are translated to another system. In other words, there is a linkage between the
two systems. How can we ensure that this linkage can be trusted?

Many different technologies have been used to link two different systems in a
trusted way. Gordon [7] integrated the BDD based verification system BuDDY
into HOL by implementing BDD-based verification algorithms inside HOL build-
ing on top of primitives provided. Since “LCF-Style” general infrastructure was
provided, by implementing BDD primitives in HOL - as long as they are cor-
rect, not only could the standard state algorithms be efficiently and safely pro-
grammed in HOL, but it also made it possible to achieve the advantages of both
theorem proving tools and state algorithms. Hurd [8] used a different method
to combine the strengths of two theorem-prover systems– Gandalf and HOL. He
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wrote functions to simulate the Gandalf proof according to the Gandalf logged
file so reconstructing the proof in HOL to form the HOL theorems. As a result,
the Gandalf proof results need not be tagged into HOL and the degree of trust
is high.

The HOL-MDG hybrid system uses another way to make the linkage more
natural and trustworthy. The MDG system is a symbolic state enumeration sys-
tem based on Multiway Decision Graphs (MDGs) [5]. The linkage between the
two systems is based on a series of importing theorems [12], which formally con-
vert the formalized MDG verification results in a form usable in a traditional
HOL hardware verification, i.e., the structural specification implements the be-
havioral specification. The formalizations have different forms for the different
verification applications, i.e., combinational verification gives a theorem of one
form, sequential verification gives a different form and so on. The importing
theorem for the sequential verification has the form:

`thm Formalized MDG result ∧
∀ ip. ∃ op. SPEC ip op ⊃

(∀ ip op. (IMPL ip op ⊃ SPEC ip op))

where SPEC represents the behavioral specification and IMPL represents the struc-
tural specification. The theorem we require in HOL is:

`thm ∀ ip op. (IMPL ip op ⊃ SPEC ip op) (1)

The first assumption is discharged by the MDG verification. However, for im-
porting the sequential verification results into HOL, a user of the hybrid system
strictly needs to prove the additional assumption (an existential theorem) to
ensure the correct HOL theorem can be made. This theorem states that for all
possible input traces, the behavioral specification SPEC can be satisfied for some
outputs (i.e., there exists at least one output for which the relation is true):

`thm ∀ ip. ∃ op. SPEC ip op (2)

When we convert the MDG results into HOL to form the HOL theorems,
the theorems actually state that the implementation of the design implements
its specification as shown in (1). This representation might meet an inconsistent
model that trivially satisfies any specification. This is sometimes called “The
false implies anything problem” [4]. If the implementation of a design (IMPL ip

op) is false for all the inputs and outputs, then this implication is a theorem, no
matter what constraint is imposed on the variables by its specification (SPEC ip

op). This is wrong because a theorem like this provides no meaning to ensure
the correctness of the circuit. One solution to this problem is to verify a stronger
consistency theorem against the implementation as suggested in [11], which has
the form:

`thm ∀ ip. ∃ op. IMPL ip op (3)

This means that for any set of input values ip there is a set of output values
op which is consistent with it. This shows that the model does not satisfy a
specification merely because it is inconsistent.
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In this paper, we investigate a way of proving the additional assumption and
the stronger consistency theorem based on the syntax and semantics of the MDG
input language [13]. As we mentioned above, we prove the additional assumption
because we want to make the linking process easier and remove the burden from
the user of the hybrid system. We prove the stronger consistency theorem because
we want to avoid an inconsistent model occurring. The above two theorems
actually have the same form. In the rest of this paper, we call them existential

theorems. If we use C to represent any specification or implementation of a
circuit, ip and op to represent the external inputs and outputs, the existential

theorem should have the form:

`thm ∀ ip. ∃ op. C ip op (4)

For example, if we consider a circuit consisting of two NOT gates in series, the
existential theorem for this circuit should be (SEM NOT ip op represents the
semantics of the NOT gate):

`thm ∀ ip. ∃ op. (∃ op1. SEM NOT ip op1 ∧ SEM NOT op1 op)

In fact, the stronger consistency theorem (3) is an existential theorem for
the structural specification, whereas the additional assumption (2) for the im-
porting theorem is an existential theorem for the behavioral specification.

The goal of the existential theorem is existentially quantified. We can re-
move hidden lines in goals of this form using EXISTS TAC, which strips away the
leading existentially quantified variable and substitutes term for each free oc-
currence in the body. This term is called the existential term. An existential

term of a variable is determined by one or several output representations of the
corresponding MDG-HDL components. An output representation of a compo-
nent represents an output function of this component, which depends on its
input value and output value at the current time or an earlier time instance.
There is a HOL tactic, EXISTS ELIM TAC [2], which is used to eliminate ex-
istentially quantified variables in a goal. This tactic corresponds to a theorem
EXISTS ELIM given below.

`thm (∃x. (x = t) ∧ (A x)) = A t (5)

In other words, if the existentially quantified variable (x) is explicitly repre-
sented by its value as in (5) with (x = t) in the goal, the tactic EXISTS ELIM TAC

can be used to remove the hidden lines. The general purpose simplification tac-
tic, SIMP TAC can similarly be used to eliminate existentially quantified vari-
ables. However, for dealing with those existentially quantified variables such
as (x) which are not represented as (x = t), we need to find their output

representations.

In this paper, we concentrate on proving the existential theorems based on
the syntax and semantics of MDG-HDL [13] [6]. However, a similar method
can be used to solve other existentially quantified goals. This is because we
provide the output representation for each component (mainly logic gates and
flip-flops). The existential term of a design, which reduces the goal ∃ x. t to
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t[u/x], is determined in terms of the corresponding output representations. We
also provide tactics for expanding the semantics of the circuit and proving the
existential theorem.

The structure of this paper is as follows: in Section 2, we overview the MDG
system. We will briefly introduce the semantics and syntax of the MDG input
language (MDG-HDL) in Section 3. In section 4, we not only give the detail
about proving the existential theorems for each component in the MDG library,
but also we provide a method which is used to prove the existential theorem
for any specification and implementation of a design. Finally, conclusions are
presented in Section 5.

2 The MDG system

The MDG system is a hardware verification system based on Multiway Decision
Graphs (MDGs). MDGs subsume the class of Bryant’s Reduced Ordered Bi-
nary Decision Diagrams (ROBDD) [3] while accommodating abstract sorts and
uninterpreted function symbols. The system combines a variety of different hard-
ware verification applications implemented using MDGs [14]. The applications
developed include: combinational verification, sequential verification, invariant
checking and model checking.

The input language of MDG is MDG-HDL [14], which is a Prolog-style hard-
ware description language and allows the use of abstract variables for represent-
ing data signals. In MDG, a circuit description file declares signals and their
sort assignment, components network, outputs, initial values for sequential ver-
ification and the mapping between state variables and next state variables. In
the components network, there is a large set of predefined components such as
logic gates, flip-flops, registers, constants, etc. Among the predefined components
there is a special component constructor table which is used to describe a func-
tional block in the implementation and specification. The TABLE constructor
is similar to a truth table but allows first-order terms in rows. It also allows the
description of high-level constructs as ITE (If-Then-Else) formulas and CASE
formulas.

3 The Syntax and the Semantics of MDG-HDL

The existential theorems we consider are theorems about the meaning of MDG-
HDL programs. We need to define first the syntax and semantics of the language.
The abstract syntax of an MDG-HDL program is in terms of the MDG circuit
description file, which consists of an external output wires list, an external input
wires list, an internal wires list and a component term. A component term de-
scribes how circuits are constructed from subcircuits with the exception of hiding
operation on internal wires. The component term could be either a predefined
MDG-HDL component, an operation to set the initial value of a variable, a next
state variable command, or a composition operation that denotes a circuit built
up by the operation of composition.
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In the MDG-HDL language, the inputs and outputs of the component TABLE

could be different sorts. These sorts could be boolean sorts, concrete sorts or
abstract sorts. In this paper, we will not consider the abstract sorts. We consider
a subset language of MDG-HDL whose inputs and outputs of a table could be
boolean sorts or concrete sorts. The concrete sort of boolean values is treated
separately as it is predefined in MDG and used with most components. It is
therefore treated as a special case. We define a new type Mdg Basic in HOL to
meet this requirement.

Mdg Basic ::= BOOL of bool | CONCRETE of string

A semantic function SemProgram is defined for giving the semantics of the
MDG-HDL programs, which is in terms of the semantics of the MDG-HDL com-
ponent term abstract syntax (SemMdghdl) and a hiding operation of the internal
wires. Since the type of inputs and outputs of the component is Mdg Basic above,
we need to judge if the inputs and outputs are of boolean value by predicate
IS BOOL. The semantics of the logic gates and flip-flops are then a conjunction of
the judgments and a relation between the input values and the output values.
For example, the NOT gate can be expressed by

`def SEM NOT ip op =

(∀ t. IS BOOL (x t) ∧ IS BOOL (y t) ∧
(MDG TO BOOL (y t ) = (∼ MDG TO BOOL (x t ))))

where predicate IS BOOL is used to justify if the value of an Mdg Basic term is
BOOL T or BOOL F, and function MDG TO BOOL converts the Mdg Basic term BOOL T

and BOOL F to boolean value T and F.
An MDG Table component is essentially a flexible form of Truth Table,

giving the value of an output in terms of variable values. For example, the table
specifying a NOT gate can be formalized as

`def NOT TABLE x y =

TABLE [x] y [[TABLE VAL (BOOL T)];

[TABLE VAL (BOOL F)]] [FSIG1;TSIG1] (λt. ARB)

The first argument to TABLE is a list of input terms, the second the variable
being defined, the third gives possible values for the inputs with the fourth giving
corresponding values on the outputs. The final argument gives the value of the
output in any cases not specified. Thus the above table states that if x is true

then the output y is false, if x is false then the output y is true, otherwise the
output y is an arbitrary value.

The semantics of the table construct was initially given by Curzon et al [6].
We adapt their table definition for adding one more base case. In their definition,
they define a predicate Table match to check if the input values match the table
values.

`def Table match inputs [] t = T ∧
Table match inputs (CONS v vs) t =

(((HD (inputs) t) = TableVal to Val v) ∨ (v = DON’T CARE)) ∧
(Table match (TL inputs) vs t))
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The function table is defined in terms of Table match. It has five arguments.
The first argument is a list of the inputs, the second is the single output, the
third is a list of table rows. Each row is a list itself, giving one allocation of
values to the inputs. The fourth argument is a list of output values. Each is the
value on the output when the inputs have the values in the corresponding row.
The final argument is the default value, taken by the output if the input values
do not match any row. It checks if there is a match on each row. If there is, the
output has the corresponding value. Otherwise, the output equals the default
value. Since the third and fourth argument may have unequal lengths, when
either list is empty, the output value equals the default value.

`def (table ip (op:num ->β) [] V out default t = (op t = default t)) ∧
(table inps out vs [] default t = (out t) = (default t)) ∧
(table ip op (CONS v vs) V out default t =

( if (Table match ip v t) then

(op t = (HD V out) t) else

(table ip op vs (TL V out) default t)))

The above definition refers to the time of interest, t. Function TABLE defines a
given table which will relate a given input to a given output if the table relation
is true at all times.

`def TABLE inps out V outs V out default =

∀t. (Justify Type inps V outs t ∧ Justify out (HD V out) t) ∧
table inps out V outs V out default t)

where functions Justify Type and Justify are used to check the type of each
input and output of a table.

The semantics of the MDG-HDL component term is represented as a function
SemMdghdl inside the logic:

`def (SemMdghdl (NOT ip op) env = SEM NOT (env ip) (env op)) ∧
......

(SemMdghdl (JOIN code1 code2) env =

((SemMdghdl code1 env) ∧ (SemMdghdl code2 env)))

where env is an environment, which is a function that has type :string →δ. This
function maps a variable name (modeled by strings) to the value of that variable.
The hiding operation uses existential quantification to hide the local variable
from the environment of the circuit. It adds an extra entry to environment env

for each internal wire. This effectively hides the internal wires in a component
term code.

`def (Dsem Int [] code env = SemMdghdl code env) ∧
(Dsem Int (CONS (w:string) ws) code env =

(∃v.(Dsem Int ws code (λwv.if (wv = w) then v else env wv))))

The semantics of a circuit is a relation on the external inputs and outputs.
In order to explicitly represent the relation, we define a function Dsem Ext. It
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adds an extra entry to the environment env for each external wire (input or
output). This function assigns all the values of external inputs or all the values
of external outputs to a list (var:(num→Mdg Basic)list). In other words, each
element in the list var indicates a value of an external input or a value of an
external output. This function makes it possible to represent the semantics of a
circuit explicitly as the relation between the external inputs and outputs.

`def (Dsem Ext [] env var = env) ∧
(Dsem Ext (CONS (v:string) vs) env var =

(Dsem Ext vs (λwv.if (wv = v) then (HD var)

else (env wv)) (TL var)))

Finally, the semantics of a program is described by SemProgram, which ex-
plicitly represents the relation between the external inputs and outputs. The
semantics of a program SemProgram is based on the functions we introduced
above. We first apply function Dsem Ext to the external inputs, which adds an
entry to the environment for all external inputs and assigns the value of each
external input to an element of a list ip. We then apply the function Dsem Ext

to the external outputs. Similarly, this adds an entry to the environment for all
external outputs and assigns the value of each external output to an element
of a list op. Finally, the function Dsem Int gives the semantics of the circuit in
terms of the semantics of the component term SemMdghdl and uses existential
quantification to hide the local variable from the environment of the circuit.

`def SemProgram (PROG exoutput exinput inv code) ip op =

let env1 = Dsem Ext (SemExinput exinput) EmptyEnv ip

in

let env2 = Dsem Ext (SemExoutput exoutput) env1 op

in

(Justify Condition code env2 (SemInvariable inv))⊃
Dsem Int (SemInvariable inv) code env2

where functions SemExoutput, SemExinput and SemInvariable are defined to ac-
cess values of the external output and input wires and internal wires, function
Justify Condition is defined to check whether each external wire has boolean
type or concrete type.

For example, the syntax a NOT gate circuit could be expressed as:

(PROG (EXOUT ["op"])(EXIN ["ip"]) (INV []) (NOT "ip" "op"))

The corresponding semantics of it is:

(∀t. IS BOOL (HD ip t) ∧ IS BOOL (HD op t)) ⊃
SEM NOT (HD ip t) (HD op t)

where first line of the semantics is the results of checking the type of each external
inputs and outputs by using the function Justify Condition. It states that if the
external wires have proper types then the semantics of the program should be
the semantics of circuit (Dsem Int). In this example the semantics of the circuit is
SEM NOT. By expanding the sematics of the NOT gate and simplifying it, we obtain
the semantics of the MDG-HDL program (one NOT gate) is:
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∃ op.

∀ t. IS BOOL (HD ip t) ∧ IS BOOL (HD op t) ⊃
∀t. MDG TO BOOL (HD op t) = ∼ MDG TO BOOL (HD ip t)

4 Solving Existential Goals

In this section, we provide the general output representation for each compo-
nent in the MDG-HDL library. Because the existential term for a design is de-
termined in terms of the output representation of its components, these provide
a toolkit for then proving the existential theorem of the design. We also provide
three tactics EXPAND SEMANTICS TAC, PROVE EXIST TAC and PROVE TABLE EXIST TAC

which automatically expand the semantics of the program and prove the goal.
The first tactic is used for expanding the semantics of the program (design) and
obtaining a goal of the form ∃ a1 ... an. body. The tactics PROVE EXIST TAC and
PROVE TABLE EXIST TAC are used for verifying goals.

The proof process for proving an existential theorem is divided into three
steps. We first expand its semantics rewriting away the abstract syntax, and
obtain the existentially quantified goal. We then strip away the existential quan-
tified variable. Finally, we prove the goal.

Example 1. Consider a circuit that only consists of one NOT gate. The ab-
stract syntax of this circuit is represented as:

(PROG (EXOUT ["op"])(EXIN ["ip"]) (INV []) (NOT "ip" "op"))

The existential theorem for this circuit is

`thm ∀ ip.

∃ op.

SemProgram (PROG (EXOUT ["op"])(EXIN ["ip"]) (INV [])

(NOT "ip" "op")) ip op

Expanding the semantics of the program using the tactic EXPAND SEMANTICS TAC,
we obtain a subgoal which has the form ∃ a1 ... an. body. Here:

∃ op.

∀ t. IS BOOL (HD ip t) ∧ IS BOOL (HD op t) ⊃
∀t. MDG TO BOOL (HD op t) = ∼ MDG TO BOOL (HD ip t)

The existential theorem of this circuit is existentially quantified by its exter-
nal output op. More detail will be given later.

In the rest of this section, we first define the output representation for each
component in the MDG-HDL library apart from the TABLE. We then provide
a method to find the output representation for the TABLE component. We next
deal with the existential quantified internal variable. Finally, we give an example
demonstrates how to apply our approach to prove the existential theorem of a
whole circuit.
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4.1 The Output Representation for the Basic MDG-HDL
Components

In the MDG-HDL library, there are two classes of non-table component. One is
that the output of a component is a signal variable (ie non state holding, the
other is that the output of a component is a state variable. The existential

term for the two classes is slightly different.

(1) The output of a component is signal variable.

Most components in the MDG-HDL library belong to this class having no
state component: their output is a signal variable. For stripping away the exis-
tentially quantified variable, we have defined the output representation for each
component. For example, the general output representation for the NOT gate is
defined as

`def existnot (ip:Mdg Basic) =

(Bool1 Mdg ∼ (λwv. (if wv = BOOL T then T else F)) ip)

where Bool1 Mdg is an auxiliary function, which converts a boolean value to a
Mdg Basic value. This definition states that the function is related to the input
ip. We use this term as the basis of the witness term for existential quantification
elimination (EXISTS TAC in HOL).

In Example 1 above, the external inputs and external outputs are one ele-
ment lists. The input of the circuit is therefore (HD ip) (taking the first element
of list ip), we therefore use (HD ip) to represent our input variable in the exis-
tential term rather than ip. The output op is a (num->Mdg Basic) list. We use
[λ(t:num). existnot (HD ip (t:num))] to represent the existential term of the
circuit. It is used to strip away the existentially quantified goal. The second tactic
PROVE EXIST TAC can then be used to prove the goal. The output representation

for other components in this class can be defined in a very similar way.

(2) The output of a component is a state variable.

In this class, the output value of a component refers to values at an earlier
time instance. When we strip away the existentially quantified variable op, the
time value in the existential term must be one instance earlier.

Example 2. Consider proving an existential theorem for a one register cir-
cuit. The output representation for a register existreg is given below:

`def existreg (ip:Mdg Basic) =

(Bool1 Mdg(λwv. (if wv = BOOL T then T else F )) ip)

We first use the tactic EXPAND SEMANTICS TAC[SEM REG] which expands the se-
mantics of the circuit. The existential quantifier elimination tactic EXISTS TAC

is then used to strip away the existentially quantified variable op. However, the
existential term [(λ(t:num). existreg (HD ip ((t-1):num)))] is different to the
one we described above. Because the output value of the register refers to values
at an earlier time instance, the time in function existreg is (t−1) rather than t.
Finally, the existential theorem for one register can be proved by using tactic
PROVE EXIST TAC.
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4.2 The Output Representation for TABLE Components

The predefined TABLE component must be dealt with separately. There ex-
ist three different situations. In each of these situations, the output

representation of the TABLE is based on the output function existtable whose
definition is given below:

`def (existtable (input:(num->α )list) [] u out (default:num->β) t =

(default:num->β) t) ∧
(existtable (input:(num->α)list) vs [] (default:num->β) t =

(default:num->β) t) ∧
(existtable input (CONS v vs (CONS u u out) default t =

(if (Table match input (v:α Table Val list) t)

then (u t)

else (existtable input vs u out default t)))

This definition represents the output value of the table. In the definition,
the input of the table input is a list. Each element in the list could be used to
represent the output value at an earlier time instance. From this definition, we
have proved a theorem which states the relation between the predicate table

and predicate existtable. A table’s output value at time t is equal to the value
of predicate existtable at the time t.

`thm ∀ u outs u out t.

table input op u outs u out default t =

(op t = (existtable input u outs u out default t))

Now, we will consider how to use existtable to give the output representation

for the three different table situations in turn.

(1) The output of a TABLE is a signal variable.

In this situation, the output is a relation of the input and the other three
table arguments. The output representation for TABLE is existtable ip vs u out

default. In other words, the function existtable represents the output relation.
For example, if we want to prove an existential theorem for the TABLE of a

NOT gate circuit, the existential term for the table specifying a NOT gate is

[existtable [(HD ip) :(num -> Mdg Basic)]

[[TABLE VAL (BOOL T)]; [TABLE VAL (BOOL F)]]

[(λt. BOOL F); (λt. BOOL T)] (λt. ARB)]

(2) The output of a TABLE is a state variable and the input of the TABLE

does not contain the output variable.

In this case, the output of the TABLE at the current time does not depend on
itself at an earlier time instance. The existential term refers to the values at an
earlier time instance, which is λt. existtable ip vs u out default (t-1). The
time in function existtable is (t−1) rather than t. For example, if we want to
prove an existential theorem for the TABLE of a Register circuit, the existential

term which refers to values at an earlier time instance for this circuit is
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[λt. existtable [(HD ip) :(num -> Mdg Basic)]

[[TABLE VAL (BOOL T)]; [TABLE VAL (BOOL F)]]

[(λt. BOOL T); (λt. BOOL F)] (λt. ARB) (t-1)]

(3) The output of a TABLE is a state variable and the input of the
TABLE contains the output variable.

In this situation, the output value of the TABLE not only depends on inputs
but also depends on its own value at an earlier time instance. We cannot give
the general output representation for this kind of TABLE. However, we provide a
method through an example to explain how to obtain an output representation

for the TABLE.
Example 3. We consider the following goal for a program containing a table

in which the table output value not only depends on inputs but also depends on
its own value at an earlier time instance.

∀ ip.

∃ op. SemProgram (PROG (EXOUT ["op"])(EXIN ["ip"]) (INV [])

(TABLESYN ["ip"; "op"] (NEXTV "op")

[[TABLE VAL (BOOL F); TABLE VAL (BOOL F)];

[TABLE VAL (BOOL F); TABLE VAL (BOOL T)];

[TABLE VAL (BOOL T); TABLE VAL (BOOL F)];

[TABLE VAL (BOOL T); TABLE VAL (BOOL T)]]

[BOOL F;BOOL T;BOOL T;BOOL T] (DENORMAL ARB))) ip op

After using the tactic EXPAND SEMANTICS TAC to expand the semantics of the
syntax, we obtain:

∃ op.

(∀ t. (IS BOOL (HD ip t) ∧ IS BOOL (HD op t)) ∧
IS BOOL ((HD op o NEXT) t)) ⊃

TABLE [HD (ip :(num -> Mdg Basic) list); HD op] (HD op (t + 1))

[[TABLE VAL (BOOL F); TABLE VAL (BOOL F)];

[TABLE VAL (BOOL F); TABLE VAL (BOOL T)];

[TABLE VAL (BOOL T); TABLE VAL (BOOL F)];

[TABLE VAL (BOOL T); TABLE VAL (BOOL T)]]

[(λ(t :num). BOOL F); (λ(t :num). BOOL T); (λ(t :num). BOOL T);

(λ(t :num). BOOL T)] (λ(t :num). ARB)

We notice that the output value at the time t+1 depends on the output value
at the time t. For stripping away the existentially quantified variable op, we have
to define a new constant existtable next of the form:

existtable next ip (SUC t) =

existtable [HD ip; (λa. existtable next ip a)]

[[TABLE VAL (BOOL F); TABLE VAL (BOOL F)];

[TABLE VAL (BOOL F); TABLE VAL (BOOL T)];

[TABLE VAL (BOOL T); TABLE VAL (BOOL F)];

[TABLE VAL (BOOL T); TABLE VAL (BOOL T)]]

[(λ(t :num). BOOL F); (λ(t :num). BOOL T); (λ(t :num). BOOL T);

(λ(t :num). BOOL T)]

(λ(t :num). ARB) t
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However, we cannot define this function directly in HOL by using the Define

function because it is not well-defined. In particular, it is of the form

f (SUC t) = g f

where f is existtable next applied to arguments, and g is existtable applied to
arguments. The function is passing f (a functional value of type:num->Mdg Basic)
to another function. In order to make this valid, we have to show that the
functions called by g are only called in ways that decrease some measure function.
Therefore, we expand the definition first and obtain a well-defined function so
as to use the Define to define this function.

We first expand the definition of the existtable, Table match, HD, TL and
TableVal to Val in order to define existtable next by using REWRITE CONV. We
can then obtain a well-defined function and use the Define to define the function
existtable next. We next obtain the existential term which is

[((existtable next (ip:(num->Mdg Basic) list)) :num->Mdg Basic)]

Finally, the existential goal can be proved by using PROVE TABLE EXIST TAC. There-
fore, we can prove the existential theorem of the above circuit by using the above
three steps as long as we find its output representations.

4.3 Dealing with the Existential Quantified Internal Variables

When we prove the existential theorem for a circuit, if the circuit contains inter-
nal wires, then we also need to strip away these wires. The existential term for
these wires are nearly the same as we mentioned above. A difference is that the
type of these wires is :num -> Mdg Basic rather than :(num -> Mdg Basic) list.

Example 4. We consider the proof of the existential theorem for a circuit
consisting of one AND gate and one REGISTER. The semantics of this circuit is

∀ ip.

∃ op.

SemProgram (PROG (EXOUT ["op"]) (EXIN ["ip1"; "ip2"]) (INV ["u"])

(JOIN (AND "ip1" "ip2" "u") (REG "u" "op"))) ip op

By expanding the semantics using EXPAND SEMANTICS TAC[SEM AND, SEM REG],
we obtain

∃. x1 op.

(∀ t. IS BOOL (HD ip t) ∧ IS BOOL (HD (TL ip) t)) ∧
IS BOOL (HD op (t + 1))) ⊃

(∀ t.

IS BOOL (x1 t) ∧
(MDG TO BOOL (x1 t) =

MDG TO BOOL (HD ip t) ∧ MDG TO BOOL (HD (TL ip) t))) ∧
IS BOOL (x1 t) ∧ (MDG TO BOOL (HD op (t + 1)) = MDG TO BOOL (x1 t))

where x1 is an internal wire who is the output of the AND gate and the input of the
REGISTER. It is a (num -> Mdg Basic) term. The existential term of x1 (x1 exist)
depends on the output representation of the AND gate (existand).



396 H. Xiong, P. Curzon, S. Tahar, A. Blandford

x1 exist = (λ(t:num). existand (HD ip (t:num)) (HD (TL ip) t))

op represents an external output, it is a (num -> Mdg Basic) list term. The
output of the REGISTER is the only element of this list. Thus the corresponding
existential term depends on the output representation of the REGISTER.

[(λ(t:num). (existreg (x1 exist (t-1))))]

The tactic EXISTS TAC can then be used to strip away the existentially quan-
tified external variable op and internal variable x1. Finally, the theorem can be
prove by using tactic PROVE EXIST TAC.

4.4 Example

Example 5. Consider the circuit shown in Figure 1. We will prove the existential
theorem of this circuit to illustrate how our approach is deployed with a circuit
containing a combination of the situations considered: internal wires, a table, a
register and combinational components.

ip1

ip2
ip3

x1
x2

x3
REG op

Table code

Fig. 1. Example

The existential theorem for this circuit is represented as:

`thm ∀ ip.

∃ op.

SemProgram(PROG (EXOUT ["op1"])

(EXIN ["ip1"; "ip2"; "ip3"])

(INV ["x1"; "x2"; "x3])

(JOIN (TABLESYN ["ip"] (NOWV "op")

[[TABLE VAL (BOOL T)];[TABLE VAL (BOOL F)]]

[BOOL F; BOOL T] (DENORMAL ARB))

(JOIN (OR "x1" "ip2" "x2")

(JOIN (AND "x2" "ip3" "x3"))

(NOT "x3" "op1")))) ip op

The proof process can be divided into three steps. We first use the tactic
EXPAND SEMANTICS TAC to expand the semantics of the syntax. We obtain:
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∃ x1 x2 x3 op.

(∀t. IS BOOL (HD ip t) ∧ IS BOOL (HD (TL ip) t) ∧
IS BOOL (HD (TL (TL ip)) t) ∧ IS BOOL (HD op t)) ⊃
TABLE [HD ip] x1 [[TABLE VAL (BOOL T)]; [TABLE VAL (BOOL F)]]

[(λt. BOOL F); (λt. BOOL T)] (λt. ARB) ∧
(∀t. (IS BOOL (x1 t) ∧ IS BOOL (x2 t) ∧

(MDG TO BOOL (x2 t) =

MDG TO BOOL (x1 t) ∨ MDG TO BOOL (HD (TL ip) t))) ∧
(IS BOOL (x2 t) ∧ IS BOOL (x3 t) ∧
(MDG TO BOOL (x3 t) =

MDG TO BOOL (x2 t) ∧ MDG TO BOOL (HD (TL (TL ip)) t))) ∧
IS BOOL (x3 t) ∧ (MDG TO BOOL (HD op t) = ∼ MDG TO BOOL (x3 t)))

where x1, x2, x3 are internal wires, op is an external wire list which is one
element list [op1]. ip is an external input list, which contains three elements
[ip1; ip2; ip3].

We then strip away the existential quantified goal. The internal variable x1

is the output of the NOT gate (TABLE representation) and the input of the OR

gate. The output representation for stripping away this variable is determined
by the NOT TABLE, which is represented as x1 exist.

x1 exist = existtable [(HD ip) ] [[TABLE VAL (BOOL T)];

[TABLE VAL (BOOL F)]]

[(λt. BOOL F); (λt. BOOL T)] (λt. ARB)

The internal variable x2 is the output of the OR gate and the input of the AND

gate. The existential term is determined by the output representation of the
OR gate, which is represented as x2 exist.

x2 exist = (λ(t:num).existor (x1 exist t ) (HD (TL ip) t))

where x1 exist is the input of the OR gate. The output representation is in terms
of its input. Similarly, The internal variable x3 is the output of the AND gate and
the input of the NOT gate. The existential term is determined by the output

representation of the AND gate, which is represented as x3 exist.

x3 exist = (λ(t:num).existand (x2 exist t ) (HD (TL (TL ip)) t))

Finally, the external output is the output of a NOT gate, the existential term is
determined by output representation of the NOT gate.

op exist = (λ(t:num).existnot (x3 exist t )

After stripping away the existentially quantified variables using the above
terms, we finally can prove the goal using tactic PROVE EXIST TAC.

This example demonstrates that knowing the output representation for each
component in the MDG-HDL component library is practically useful when find-
ing a proper existential term of a whole circuit. For any circuit in MDG-
HDL, as long as we find the corresponding existential term of the circuit, the
existential theorem of this circuit can be proved.
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5 Conclusions and Further work

In this paper, we summarized a general way of how to prove the existential theo-
rem for the implementation or specification of hardware designs based on the syn-
tax and the semantics of MDG-HDL. We have defined the output representation

for each component in the MDG component library. The existential term of
a design, which is used to strip away the leading existentially quantified vari-
able and substitutes term for each free occurrence in the body, is determined
in terms of those output representations. The proving process normally can be
considered as three steps. Since we directly deal with the syntax and semantics
of the MDG-HDL program, we first use a tactic EXPAND SEMANTICS TAC to expand
the semantics of the program (design) and obtain a HOL goal of the form ∃ a1

... an. body. We then use the existential term to strip away the existentially
quantified variable and substitute term for each free occurrence in the body.
However, doing such existential elimination still needs user guidance. Finally, a
further two tactics PROVE EXIST TAC and PROVE TABLE EXIST TAC are used to solve
the resulting goal.

The reason that we prove the existential theorem is to easily import the
MDG results into HOL and avoid an inconsistent model occurring. We intend to
further refine the tactics provided so that the existential theorem can be proved
more efficiently and easily. This would remove the burden from the user of the
MDG-HOL hybrid system.

Although we concentrate on proving the existential theorem for the speci-
fication and implementation of a design based on the syntax and semantics of
MDG-HDL in this paper, our methods can be explored to slove other HOL goals
which are existentially quantified, since it also can be viewed as an existential

theorem. In fact, we also provide a library for giving the output representation of
each component in a boolean subset. It can be used to construct the existential

term in the HOL goal. In other words, our existential terms and output

representations could be used to solve some existential quantified HOL goals in
the other applications.
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